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Abstract model, where no assumptions are made about faulty

components, capturing scenarios such as bugs that cause
Many distributed services are hosted atlarge, sharedr@ebg  incorrect behavior or even malicious attacks. A crash-
ically diverse data centers, and they use replication tieseh  fay|t model is typically assumed in most widely deployed
high availability despite the unreachability of an enn@zzd services today, including those described above; the pri-
center. Recent events show that non-crash faults occqeseth mary motivation for this design choice is that all ma-
services and may lead to long outages. While ByzantinetFaul _, . . . .

chines of such commercial services run in the trusted en-

Tolerance (BFT) could be used to withstand these faults, cur . fh . ider's d 16
rent BFT protocols can become unavailable if a small frac-Vironment of the service provider's data center [16].

tion of their replicas are unreachable. This is becausd-exis Unfortunately, the crash-fault assumption is not al-
ing BFT protocols favor strong safety guarantees (consige  ways valid even in trusted environments, and the con-
over liveness (availability). sequences can be disastrous. To give a few recent exam-
This paper presents a novel BFT state machine replicatiorples, Amazon’s S3 storage service suffered a multi-hour
protocol called Zeno that trades consistency for higheil-ava outage, caused by corruption in the internal state of a
ability. In particular, Zeno replaces strong consisterlay (- goyer that spread throughout the entire system [2]; also
earizability) with a weaker guarantee\(entual consistenty an outage in Google's App Engine was triggered by a bug
clients can temporarily miss each other's updates but when t in datastore servers that caused some requests to return

network is stable the states from the individual partitians ) . .
merged by having the replicas agree on a total order for all re €/"0r'S [20]; and a multi-day outage at the Netflix DVD

quests. We have built a prototype of Zeno and our evaluatiornail-rental was caused by a faulty hardware component

using micro-benchmarks shows that Zeno provides bettdr ava that triggered a database corruption event [31].

ability than traditional BFT protocols. Byzantine-fault-tolerant (BFT) replication protocols
are an attractive solution for dealing with such faults. Re-
cent research advances in this area have shown that BFT
protocols can perform well in terms of throughput and la-

niency [24], they can use a small number of replicas equal

for large-scale Internet services and applications in a val° their crash-fault counterparts [10, 39], and they can be

riety of fields. These applications are often designed a&'Sed t© replicate off-the-shelf, non-deterministic, azrev
a composition of multiple services. For instance, Ama_d|st|nct implementations of common services [32, 38].
zon'’s S3 storage service and its e-commerce platform use However, most proposals for BFT protocols have fo-
Dynamo [16] as a storage substrate, or Google’s indice§used on strong semantics such as linearizability [23],
are built using the MapReduce [15] parallel processingvhere intuitively the replicated system appears to the
framework, which in turn can use GFS [19] for storage. clients as a single, correct, sequential server. The pice t
Ensuring correct and continuous operation of thesd?ay for such strong semantics is that each operation must
services is critical, since downtime can lead to loss ofcontact a large subset (more th&nor in some case§)
revenue, bad press, and customer anger [5]. Thus, tgf the replicas to conclude, which can cause the system to
achieve high availability, these services replicate datdaltif more than a small fractior(or g, respectively) of
and computation, commonly at multiple sites, to be ablethe replicas are unreachable due to maintenance events,
to withstand events that make an entire data center urf?€twork partitions, or other non-Byzantine faults. This
reachable [16] such as network partitions, maintenancéontrasts with the philosophy of systems deployed in cor-
events, and physical disasters. porate data centers [16, 22, 36], which favor availability
When designing replication protocols, assumptionsand performance, possibly sacrificing the semantics of
have to be made about the types of faults the protocolh€ system, so they can provide continuous service and
is designed to tolerate. The main choice lies between eet tight SLAs [16].
crash-faultmodel, where it is assumed nodes fail cleanly In this paper we propose Zeno, a new BFT replication
by becoming completely inoperable, oBsizantine-fault  protocol designed to meet the needs of modern services

1 Introduction

Data centers are becoming a crucial computing platfor



running in corporate data centers. In particular, Zeno fahave both sides of the partitions make progress and si-
vors service performance and availability, at the cost ofmultaneously achieve a consistency level that provided
providing weaker consistency guarantees than traditionad total order on the operations (“seen” by all client re-
BFT replication when network partitions and other infre- quests) [7]. Intuitively, the closest approximation from
guent events reduce the availability of individual serversthat idealized consistency that could be offered is even-
Zeno offers eventual consistency semantics [18]tual consistency, where clients on each side of the parti-
which intuitively means that different clients can be un-tion agree on an ordering (that only orders their opera-
aware of the effects of each other’s operations, e.g., durtions with respect to each other), and, when enough con-
ing a network partition, but operations are never lostnectivity is re-established, the two divergent states can
and will eventually appear in a linear history of the be merged, meaning that a total order between the oper-
service—corresponding to that abstraction of a singleations on both sides can be established, and subsequent
correct, sequential server—once enough connectivity imperations will reflect that order.
re-established. Additionally, we argue that eventual consistency is
In building Zeno we did not start from scratch, but in- sufficientfrom the standpoint of the properties required
stead adapted Zyzzyva [24], a state-of-the-art BFT repliby many services and applications that run in data cen-
cation protocol, to provide high availability. Zyzzyva ters. This has been clearly stated by the designers of
employs speculation to conclude operations fast andnany of these services [3, 14, 16, 22, 36]. Applications
cheaply, yielding high service throughput during favor- that use an eventually consistent service have to be able
able system conditions—while connectivity and repli- to work with responses that may not include some previ-
cas are available—so it is a good candidate to adapbusly executed operations. To give an example of appli-
for our purposes. Adaptation was challenging for sev-cations that use Dynamo, this means that customers may
eral reasons, such as dealing with the conflict betweenot get the most up-to-date sales ranks, or may even see
the client’'s need for a fast and meaningful response andome items they deleted reappear in their shoping carts,
the requirement that each request is brought to complein which case the delete operation may have to be redone.
tion, or adapting theiew changerotocols to also enable However, those events are much preferrable to having a
progress when only a small fraction of the replicas areslow, or unavailable service.
reachable and to merge the state of individual partitions Beyond data-center applications, many other exam-
when enough connectivity is re-established. ples of eventually consistent services has been deployed
The rest of the paper is organized as follows. Section 2n common-use systems, for example, DNS. Saito and
motivates the need for eventual consistency. Section Shapiro [33] provide a more thourough survey of the
defines the properties guaranteed by our protocol. Sedheme.
tion 4 describe how Zeno works and Section 5 sketches
Fhe proof of |Fs correctness. Section 6 eyaluates how oup Algorithm Properties
implementation of Zeno performs. Section 7 presents re-

lated work, Section 8 concludes, and efficient symmetriGye oy informally specify safety and liveness properties
cryptography based Zeno is presented in Appendix A. - o¢ 5 generic eventually consistent BFT service.

To specify safety in a formal way, we use the language
2 The Case for Eventual Consistency of I/O automata [29, chapter 8]. Our definitions extend
the correctness criteria oflmearizableByzantine-fault
Various levels and definitions of weak consistency haveolerant service [8], and a definition of a crash fault-
been proposed by different communities [17], so we needolerant eventually consistent service [18].
to justify why our particular choice is adequate. We Figures 1 and 2 describe an I/O automaton correspond-
argue that eventual consistency is batbcessaryfor  ing to a generic eventually consistent service. We will
the guarantees we are targetting, anfficientfrom the  use as a running example a shopping cart service with
standpoint of many applications. operations such asddltem RemoveltenCheckOutetc.
Consider a scenario where a network partition occursThe service is characterized by a sestatesQ (all pos-
that causes half of the replicas from a given replica grougsible sets of items in a shopping cart), an initial state
to be on one side of the partition and the other half on theyy € Q (an empty cart), a set alientsC, a set ofservers
other side. This is plausible given that replicated sys-{1, a set of operation® (Addltem Removelteretc.), a
tems often spread their replicas over multiple data censet of responsed’ (the result of an item addition or dele-
ters for increased reliability [16], and that Internet part tion) and a transition functiog: C x O x Q@ — O’ x Q.
tions do occur in practice [6]. In this case, eventual con-This transition function models the sequential behavior
sistency isnecessaryo offer high availability to clients of the state machine being replicated, for example, when
on both sides of the partition, since it is impossible toa client invokes arAddIitemoperation for itemx on an



Signature: Transitions:

Inputs: Internals: CLIENT-FAILURE, SERVER-FAILURE;
REQUEST(0,s)¢ ENTER(o,s.t,C) Eff: faulty-client := true Pre: [failed| < f
CLIENT-FAILURE, MERGE Eff: faulty-servey:= true
SERVER-FAILURE; EXECUTE(o,s t,c) REQUEST(0,s)c

FORK Eff: last-req := last-req, + 1
Outputs: FAULTY-REQUEST(0,s,t,c) invoked:= invokedJ {(o,s, last-req,c)}
REPLY-WEAK(r)c COMMIT
REPLY-STRONG(r)c (Here,o€ O,ceC,teN,ie, re ) ENTER(0,s.t,C)

Pre:(o,s,t,c) € invoked\3h e H : (o,s,t,c) ¢ h
Eff: h:=selecthe H: (o,s,t,c) ¢ h
State components: add(o,s,t,c) to the end oh

MERGE

Pre:|H| > 2

Eff: select{h,h'} CH
h’ := mergeh andh
committedh”) := maxcommittedh), committedh’))
H:=H-{hh}+{h"}

invokedC O x {0,1} x N x C, initially empty

H, a set othistories initially {€}, € being the empty history
out out-commitC O’ x N x C, initially empty

Ve e C, last-req, € N, initially 0

Ve e C, faulty-client € Bool, initially false

Vi € N, faulty-server € Bool, initially false

failed = |{i|faulty-server = true}|

maxhistz | (n— |failed))/(f +1— [failed)) ES:{"; | < menhist

Eff: selecthe H
Figure 1: Specification of an eventually consistent ser- Hi=H+{h
vice: signature and state components. COMMIT
Eff: selecth € H with the longest committed prefix
. L committedh) :=h
empty shopping cart, the state changed to contain item

X. We assume that at mobt< N = |I1| servers and any =~ EXECUTE(o,st.c)
. . Pre:dheH: (o,st,c)eh
number of clients can be Byzantine faulty. Eff: selecth € H: (0,5.,) € h

i r:= response ofo,s,t,c) in h
We model the global state of the eventually consistent " = (0.1 0) & commmittedh) thenout-commit— out-commit) {(r.t,c)}

service as a seivoked of operations, where each oper- else ifnot sthenout:= outU {(r,t,c)}
ation is eql_leped vv_|th a boolean flag, declaring whether REPLY-WEAK(1). REPLY-STRONG(r e
the operation requires only a strong response (we call pre:faulty-clientv Pre:faulty-client v
i _ va i _ 3t: (r,t,c) € out 3t : (r,t,c) € out-commit
such a requesitrong, a timestamp (a non-negative inte Eff: out:— ot {(1..0)} Eff: out-commit— out-commit- {(r.t,c)}

ger), and a client identifieirjvokedC O x {0,1} x N x
C), a (multi)setH, of histories i.e., totally ordered sub- EAU,LTY'REQUEfT(QSLC)c
. . . . K re:faulty-client = true
sets ofinvoked The histories describe all possible con- Eff: in:=inu{(o,st,c)}
current views of the service state the non-faulty servers
may have. This captures the intuitive notion that somerjgure 2: Specification of an eventually consistent ser-
operations may have executed without being aware ofjce: transitions.

each other, e.g., on different sides of a network partition, Faults of clients and replicas are modeled as input

and are therefore only ordered with respect to a subset of .+ ) s CLIENT-FAILURE. and SERVER-FAILURE:
the requests that were executed. The service maintai%spectively ¢ v

an invariant that the total number of divergent histories To describe the transitions, we follow the flow of a

ot | _Nn—[failed . . ) -
never exceedsaxhist= | 7 g |, Wherelfailed is  ¢jient request. A requestgenerated by a correct client

the current number of failed servers. Intuitively, with js modelled as an input actid?®EQUEST (o). that com-
failed| servers, there can be no more tinaaxhisgroups  putes the timestamof the current request afand adds
of f +1 servers, disjoint on the set of correct servers.gn elemento, s,t, c) to the set of invocatiorigvoked In-
Each of these groups may therefore maintain an indeternal actiorENTER(0,s,t, c) adds the reques$b, s, t,c)

pendent history of clients’ requests. to the end of one of the histories i, if the request was
A sequence of operations that are already committedot already there.
are modelled as a magmmitteq defined onH, that Action MERGE creates a new history from two histo-

maps each historli € H to a prefix ofh. For each two ries inH, which adopts the longest committed prefix of
historiesh andh, committedh) and committedh’) are  the two histories. ActiorORK split a given history into
related by containment, hence the order of every opertwo, under the condition that the total number of histories
ation in committeddoes not change with time. For ex- in H does not exceemhaxhist Intuitively, these two ac-
ample, after aCheckOutoperation on a shopping cart tions describe the evolution of views that correct servers
becomes committed, its position in the committed his-may have in case of creation and merging of partitions.
tory becomes locked, and subsequ€htckOutopera- At any time, one of the histories with the longest com-
tions that commit see the effects of the previ@rseck-  mitted prefix can commit all its requests (actiGOM-
Out MIT).



A request(o,s,t,c) can be executed based on its po- request or a strong request issued by a correct client

sition in a historyh and the corresponding response is is eventually committed.
put in one of the output buffersut andout-commit(ac- . . ) .
tion EXECUTE).! If (0,s,t,c) is in committedh), then In particular,(L1) and (L2) imply that if there is a

a strong reply is put irout-commit Otherwise, if the @n eventually synchronous set of 2 1 correct replicas,
corresponding request was not declared strong, a wedk€neach(weak or strong) request issued by a correct
reply is put inout In our running example, aAdditem  client will eventually be committed.

request for itemx on an empty cart that is concurrent ~AS we will explain later, ensuringL1) in the pres-
with anotherAdditemrequest for itemy may receive a ence of partitions may require unbounded storage. We
response in which only itemappears in the cart (for the will present a protocol addition that bounds the storage
case wheréddlten(x) is eventually ordered beforkd- ~ requirements at the expense of relax{hg).

ditem(y), or a response in which bothandy are in the
cart (if Addltendy) is ordered first).

Output actions REPLY-WEAK(r). and REPLY-
STRONG(r); are enabled when, for sontge(r,t,c) €
outor (r,t,c) € out-commitrespectively. WheREPLY- 4.1 System model
WEAK(r). is issued, we say that cliemt receives a Zeno is a BFT state machine replication protocol. It
weak responseand the corresponding requésts,t,c) requiresN = (3f 4+ 1) replicas to toleratd Byzantine
is weakly completeWhenREPLY-STRONG(r)¢ is is-  faults, i.e., we make no assumption about the behavior
sued, we say that cliestreceives atrong responsend  of faulty replicas. Zeno also tolerates an arbitrary num-
(0,s,t,c) is strongly completer committed ber of Byzantine clients. We assume no node can break

The strong responses correspond to committed opera&ryptographic techniques like collision-resistant diges
tions that are totally ordered, unlike the weak responsegncryption, and signing. The protocol we present in this
whose position in the total order is still undefined. In our paper uses public key digital signatures to authenticate
example, adding an element might only wait for a weakcommunication. We present a modified version of the
response, but checking out could wait for a strong re{rotocol that uses more efficient symmetric cryptogra-
sponse, to ensure other checkout operations see that cghy based on message authentication codes (MACs) in
tain items were already checked out. the Appendix A.

A system ensuresventual consistenaf every trace The protocol uses two kinds of quorunsirong quo-
it produces—that is, every sequence of input and outputumsconsisting of any group of2+ 1 distinct replicas,
actions it exhibits as it evolves over time—belongs to theandweak quorumsf f 4 1 distinct replicas.

4 Zeno Protocol

set of traces of the automaton in Figures 1 and 2. The system easily generalizes to aNy> 3f + 1,
) in which case the size o$trong quorumsbecomes
3.1 Liveness ML and weak quorums remain the same, indepen-

On the liveness side, our service guarantees that a requednt of N. Note that one can apply our techniques in

issued by a correct client is processed and a response ¥&ry large replica groups (wheite¢ > 3f + 1) and still

returned to the client, provided that the client can com-make progress as long ds+ 1 replicas are available,

municate withenoughreplicas in a timely manner. whereas traditional (strongly consistent) BFT systems
More precisely, we assume a default round-trip delaycan be blocked unless at led$t1+1] replicas, grow-

A and we say that a set of servéisC I, is eventually  ing with N, are available.

synchronoudf there is a time after which every two-way )

message exchange withiif takes at mosa time units. 4.2 Overview

We also assume that every two correct servers or clientgjke most traditional BFT state machine replication pro-
can (_aventually reliably communicate. Now our progresscols, Zeno has three componersisquence number as-
requirements can be put as follows: signmen{(Section 4.4) to determine the total order of op-
erations,view changeg¢Section 4.5) to deal with leader
replica election, andheckpointingdSection 4.8) to deal
with garbage collection of protocol and application state.
The execution goes through a sequence of configu-
(L2) Ifthere exists an eventually synchronous setbf2 rations calledviews In each view, a designated leader
1 correct server§l’, then every weakly complete replica (theprimary) is responsible for assigning mono-
1We consider here deterministic services and, thus, a toder @n tonica”y increasmg sequence numbers to clients’ opera-

a set of operations unambiguously determines the stateecgetvice j[iOI‘IIS. Areplicaj is the primary for the view numbered
and the responses to all operations. iff j =v modN.

(L1) Ifthere exists an eventually synchronous seft &f1
correct server§l’, then every weak request issued
by a correct client is eventually weakly complete.




| Name | Meaning | our protocol faithfully. Table 1 collects our notation.

v current view number We start by explaining the protocol state at the repli-
n highest sequence number executed cas. Then we present details about the three protocol
h history, a hash-chain digest of the requests  components. We used Zyzzyva [24] as a starting point
o operation to be performed for designing Zeno. Therefore, throughout the presenta-
t timestamp assigned by the client to each reqyest jon, we will explain how Zeno differs from Zyzzyva.
S flag indicating if this is a strong operation
r result of the operation

D(.) cryptographic digest function 4.3 Protocol State

cC highest commit certificate Each replicai maintains the highest sequence number
ND non-deterministic argument to an operation n it has executed, the numberof the view it is cur-

OR Order Request message rently participating in, and an ordered history of requests

Table 1. Notations used in message fields. it has executed along with the ordering received from

. _ the primary. Replicas maintain a hash-chain digegst
At a high level, normal case execution of a requestys iy operations in their history in the following way:

proceeds as follows. A client first sends its request tonn+1 — D(hn, D(REQn:1)), whereD is a cryptographic
all replicas. A designated primary replica assigns a Sedigest functfon and BQp, 1 is the request assigned se-
guence number to the client request and broadcasts th!ﬁjence number- 1.

proposal to the remaining replicas. Then all replicas ex-

ec(u)te ther:equl_est and Leturn af;_eply t? the cllent.h_ ¢ is calledcommittedwhen a replica gathers @mmit
nce the client gathers sufficiently manyatching certificate (denotedCC and described in detail in Sec-

replies—replies that agree on the operation result, th‘ﬁon 4.4) for/; each replica only remembers the highest
sequence number, the view, and the replica history—ibC it withessed

returns this result to the application. For weak requests, To prevent the history of requests from growing with-

I sufﬁ_ces that a sm_gle cprrect replica re_turned the reout bounds, replicas assemble checkpoints after every
sult, since that replica will not only provide a correct

K reolv b | tina th t butit wil CHKP_INTERVALsequence numbers. For every check-
Wlea rep%/ ﬁpropery_/tetzr)](efu ng tet ret(ﬂ]uelfs ' uhl' \tNI ypoint sequence numbér a replica first obtains th€C
a'so eventually commit that request 1o the ihear istong, -y 54 executes all operations upto and includingt
of the service. Therefore, the client need only collect

ichi lies f K f repli F this point, a replica takes a snapshot of the application
matching replies from aveak quorunof replicas. For ..o ocit (Section 4.8).

strong requests, the client must wait for matching replies : : :
from astrong quorumthat is, a group of at leastf2- 1 Replicas remember the set of operations received from
' each clientt in their request[c]buffer and only the last

distinct replicas. Th|s |mplles that Zeno can Complet.ereply sent to each client in theieply[c] buffer. There-
many weak operations in parallel across different parti-

. : guestbuffer is flushed when a checkpoint is taken.
tions when only weak quorums are available, whereas
it can complete strong operations only when there are .
strong quoﬁjms ava"a%le'_o Y 4.4 Sequence Number Assignment
Whenever operations do not make progress, or if repli-To describe how sequence number assignment works, we
cas agree that the primary is faulty, a view change profollow the flow of a request.
tocol tries to elect a new primary. Unlike in previous
BFT protocols, view changes in Zeno can proceed withClient sends request. A correct clientc sends arequest
the concordancy of only a weak quorum. This can allow(REQUEST,0,t,c,s). to all replicas, where is the op-
multiple primaries to coexist in the system (e.g., duringeration; is a sequence number incremented on every re-
a network partition) which is necessary to make progresgjuest, andis the strong operation flag.
with eventual consistency. However, as soon as these
multiple views (with possibly divergent sets of opera- Primary assigns sequence number and broadcasts or-
tions) detect each other (Section 4.6), they reconcile theider request (OR) message. If the last operation ex-
operations via a merge procedure (Section 4.7), restoringcuted for this client has timestantp=t — 1, then
consistency among replicas. primary i assigns the next available sequence number
In what follows, messages with a subscript of the formn + 1 to this request, increments and then broadcasts
o denote a public-key signature by princigal In all  a (OR,v,n,hy,,D(REQ),i,5,ND);; message to backup
protocol actions, malformed or improperly signed mes-replicas. ND is a set of non-deterministic application
sages are dropped without further processing. We intervariables, such as a seed for a pseudorandom num-
changeably use terms “non-faulty” and “correct” to meanber generator, used by the application to generate non-
system components (e.g., replicas and clients) that follovdeterminism.

A prefix of the ordered history upto sequence number



Replicas receive OR. When a replicaj receives an and to a lower latency for request execution when inter-
OR message and the corresponding client request, it firstode latencies are heterogeneous.

checks if both are authentic, and then checks if it is in

view v. If valid, it calculates,, ; = D(h,,D(REQ)) and Second, Zeno requires clients to use sequential times-
checks ifl,,; is equal to the history digest in the OR tamps instead of monotonically increasing but not nec-
message. Next, it increments its highest sequence nungssarily sequential timestamps (which are the norm in
bern, and executes the operatiofrom REQ on the ap-  comparable systems). This is required for garbage col-

plication state and obtains a replyA replica sends the lection (Section 4.8). This raises the issue of how to deal
reply ((SPECREPLY,V,n, hn,D(r),c,t>oj,j,r,OR> im- with clients that reboot or otherwise lose the informa-

mediately to the client it is false (i.e., this is a weak tion aboutthe latest sequence number. In our currentim-

request). Ifs is true, then the request must be com- plementation we are not storing this sequence number
mitted before replying, so a replica first multicasts apersistently before sending the request. We chose this

(ComMMIT,OR, j)g; to all others. When a replica re- because the guarantees we obtain are still quite strong:
ceives at least 24+ 1 such @MMIT messages (in- the requests that were already committed will remain in

cluding its own) matching im, v, h,, D(REQ), it the system, this does not interfere with requests from

forms a commit certificat€C consisting of the set of other clients, and all that might happen is the client los-
CoMmmIT messages and the corresponding OR, store#lg some of its initial requests after rebooting or old-

the CC, and sends the reply to the client in a messageest uncommitted requests. As future work, we will de-

((REPLY,V,n,hy,D(r),C.t)g;, }.r,OR). The primary fol- vise protocols for improving these guarantees further, or
lows the same logic to execute the request, potentialljor storing sequence numbers efficiently using SSDs or
committing it, and sending the reply to the client. Note NVRAM.

that the commit protocol used for strong requests will , ,
also add all the preceding weak requests to the set of 1hird, whereas Zyzzyva offers a single-phase perfor-
committed operations. mance optimization, in which a request commits in only

three message steps under some conditions (when all
Client receives responses. For weak requests, if a 3f+1replicas operate roughly synchronously and are all
client receives a weak quorum oPSCREPLY messages available and non-faulty), Zeno disables that optimiza-
matching in theiw, n, h, r, and OR, it considers the re- tion. The rationale behind this removal is based on the
quest weakly complete and returns a weak result to theiew change protocol (Section 4.5) so we defer the dis-
application. For strong requests, a client requires matcheussion until then. A positive side-effect of this removal
ing REPLY messages from a strong quorum to consideris that, unlike with Zyzzyva, Zeno does not entrust po-
the operation complete. tentially faulty clients with any protocol step other than

sending requests and collecting responses.
Fill Hole Protocol. Replicas only execute requests—
both weak and strong—in sequence number order. How- Finally, clients in Zeno send the request to all replicas
ever, due to message loss or other network disrupwhereas clients in Zyzzyva send the request only to the
tions, a replicai may receive an OR or a @umIT primary replica. This change is required only in the MAC
message with a higher-than-expected sequence nurwersion of the protocol but we present it here to keep
ber (that is, OR > n+ 1); the replica discards such the protocol description consistent. At a high level, this
messages, asking the primary to “fill it in” on what change is required to ensure that a faulty primary can-
it has missed (the OR messages with sequence nunmmot prevent a correct request that has weakly completed
bers betweem+ 1 and ORn) by sending the primary from committing—the faulty primary may manipulate a
a (FILLHOLE,v,n,OR.n,i) message. Upon receipt, the few of the MACs in an authenticator present in the re-
primary resends all of the requested OR messages bacjuest before forwarding it to others, and during commit
toi, to bring it up-to-date. phase, not enough correct replicas correctly verify the

authenticator and drop the request. Interestingly, we find
Comparison to Zyzzyva. There are four important that the implementations of both PBFT and Zyzzyva pro-

differences between Zeno and Zyzzyvain the normal extocols also require the clients to send the request directly
ecution of the protocol. to all replicas.

First, Zeno clients only need matching replies from a
weak quorum, whereas Zyzzyva requires at least a strong Our protocol description omits some of the pedantic
qguorum; this leads to significant increase in availability, details such as handling faulty clients or request retrans-
when for example only betweent+ 1 and X replicasare  missions; these cases are handled similarly to Zyzzyva
available. It also allows for slightly lower overhead at the and do not affect the overheads or benefits of Zeno when
client due to reduced message processing requirementspmpared to Zyzzyva.



4.5 View Changes one where a strong quorum of replicas participate which
is called astrong view change If a replica does not

We now turn to the election of a new primary when thereceive the MwWVIEW message before the view change
current primary is unavailable or faulty. The key point _. . : Sag . 9
timer expires, it starts a view change into the next view

behind our view change protocol is that it must be able b
to proceed when only a weak quorum of replicas is availUMoer. .
able unlike view change algorithms in strongly consistent Note that waiting for messages from a s_trong quorum
BFT systems which require availability of a strong quo-'S N°t needed to meet our eventual consistency specifi-
rum to make progress. The reason for this is the follow-C&tion. but helps to avoid a situation where some opera-
ing: strongly consistent BFT systems rely on ¢eorum tions are notimmediately incorporated into the new view,
intersection propertyo ensure that if a strong quoru@ which would later create a divergence that would need to
decides to change view and another strong quaBlide- be reso_lveq _using our merge procedure. Thus itimproves
cides to commit a request, there is at least one non-fault)'® availability of our protocol. o

replica in both quorums ensuring that view changes do Each replica locally calculates the initial state for the
not “lose” requests committed previously. This implies "8W View by executing the requests containedn

that the sizes of strong quorums are at ledst-2, so thereby updating both and the history chain digeht.
that the intersection of any two contains at leéist 1 The order in which these requests are executed and how

replicas, including—since no more thdnof those can the initial state for _the new view is calcu_lated is relz_ﬂed
be faulty—at least one non-faulty replica. In contrast,!0 how we merge divergent states from differentreplicas,
Zeno does not require view change quorums to intersecE0 We defer this explanation to Sectlon.4.7. Each replica
a weak request missing from a view change will be eventhen sends QVIEWCONFIRM,V+ 1,1, hn,i); to all oth-
tually committed when the correct replica executing it €"S» @nd once it receives suchew CONFIRM messages
manages to reach a strong quorum of correct replicagnatching inv+1,n, andh from a weak or a strong quo-
whereas strong requests missing from a view change wilflim (for weak or strong view changes, respectively) the

cause a subsequent provable divergence and applicatiofgPlica becomes active in viewr- 1 and stops processing
state merge. messages for any prior views.

The view change protocol allows a set bf- 1 cor-

View Change Protocol. A client ¢ retransmits the re- rect but slow replicas to initiate a global view change
quest to all replicas if it times out before completing its even if there is a set df + 1 synchronized correct repli-
request. A replicareceiving a client retransmission first cas, which may affect our liveness guarantees (in par-
checks if the request is already executed; if so, it simplyticular, the ability to eventually execute weak requests
resends the ®=CREPLY/REPLY to the client from itge-  when there is a synchronous setfof 1 correct servers).
ply[c] buffer. Otherwise, the replica forwards the requestWe avoid this by prioritizing client requests over view
to the primary and starts a IHateThePrimary timer. change requests as follows. Every replica maintains a

In the latter case, if the replica does not receiveset of client requests that it received but have not been
an OR message before it times out, it broadcastprocessed (put in an ordered request) by the primary.
(IHATETHEPRIMARY, V)4 to all replicas, but contin- Whenever a replica receives a message frofnre-
ues to participate in the current view. If a replica lated to the view change protocol (WETHEPRIMARY,
receives such accusations from a weak quorum, iVIEWCHANGE, NEWVIEW, or VIEWCONFIRM) for a
stops participating in the current view and sends a higher view,i first forwards the outstanding requests to
(VIEWCHANGE,V+ 1,CC, 0), to other replicas, where the current primary and waits until the corresponding
CC is the highest commit certificate, ar@ is i’'s or-  ORs are received or a timer expires. For each pending re-
dered request history since that commit certificate, i.e.guest, if a valid OR is received, then the replica sends the
all OR messages for requests with sequence numbeggrresponding response back to the client. Thero-
higher than the one iBC. It then starts the view change cesses the original view change related messagesjfrom
timer. according to the protocol described above. This guaran-

The primary replicg for view v+ 1 starts a timer with ~ tees that the system makes progress even in the presence
a shorter timeout value called the aggregation timer an@f continuous view changes caused by the slow replicas
waits until it collects a set of MeWCHANGE messages N such pathological situations.
for view v+ 1 from astrongquorum, or until its aggre-
gation timer expires. If the aggregation timer expires andComparison to Zyzzyva. View changes in Zeno differ
the primary replica has collectdd+ 1 or more such mes- from Zyzzyva in the size of the quorum required for a
sages, it sends dNEWVIEW,V+1,P)g; to other repli-  view change to succeed: we require- 1 view change
cas, whereP is the set of VEWCHANGE messages it messages before a new view can be announced, whereas
gathered (we call thisweak view changes opposed to previous protocols requiredf2+ 1 messages. Moreover,



the way a new view message is processed is also difmessages such as ORQEMIT, or CHECKPOINT (de-
ferent in Zeno. Specifically, the start state in a newscribed in Section 4.8) that purport to share the same his-
view must incorporate not only the highes€ in the  tory as its own.

VIEWCHANGE messages, but also allRDERREQ that For clarity, we first describe how we detect divergence
appear in any YEWCHANGE message from the previ- within a view and then discuss detection across views.
ous view. This guarantees that a request is incorporated/e also defer details pertaining to garbage collection of
within the state of a new view even if only a single replicareplica state until Section 4.8.

reports it; in contrast, Zyzzyva and other similar proto- . . . .
cols require support from a weak quorum for every re-4.6.1 Divergence between replicas in same view
quest moved forward through a view change. This is reSuppose replica is in view v, has executed up to
quired in Zeno since it is possible that only one replicasequence number, and receives a properly authen-
supports an operation that was executed in a weak viewcated message (OR,vi,n;, hn;,D(REQ), p,s,ND)g,
and no other non-faulty replica has seen that operatioror (CommIT, (OR,vi,nj, hn;,D(REQ), p,S,ND)g,, j) o,
and because bringing such operations to a higher view ifrom replicaj.
needed to ensure that weak requests are eventually com-if n, < nj, i.e., j has executed a request with
mitted. sequence numbem;, then the fill-hole mecha-
The following sections describe additions to the viewnism is started, and receives fromj a message
change protocols to incorporate functionality for detect-(OR,V, nj,hn,,D(REQ),k,5,ND)g,, WhereV < v; and
ing and merging concurrent histories, which are also exk = primary(V').

clusive to Zeno. Otherwise, ifn; > nj, both replicas have executed a
request with sequence numbgrand thereforé must
4.6 Detecting Concurrent Histories have the som¢OR, V', nj, hy,,D(REQ), k,s,ND) g, mes-

o ) ) _ sage in its log, where < v; andk = primary(V).
Concurrent histories (i.e., divergence in the service$tat |t the two history digests match (the lodaj, or hy,
can be formed for several reasons. This can occur Wheaepending on whethet, > n;, and the one received in

the view change logic leads to the presence of two replithe message), then the two histories are consistent and

cas that simultaneously believe they are the primary, ang, concurrency is deduced.

there are a sufficient number of other replicas that also |t instead the two history digests differ, the histories

share that belief and complete weak operations proposed st differ as well. If the two OR messages are authen-

by each primary. This could be the case during a networkicated by the same primary, together they constitute a

partition that splits _the set of replicas |.nto two subsets,proof of misbehavior (POMhrough an inductive argu-

each of them containing at least-1replicas. ~ mentit can be shown that the primary must have assigned
Another possible reason for concurrent histories is thagjiferent requests to the same sequence numpeuch

the base history decided during a view change may noj poMm is sufficient to initiate a view change and a merge

have the latest committed operations from prior views.qf histories (Section 4.7).

This is because a view change quorum (a weak quorum) The case when the two OR messages are authenticated

may not share a non-faulty replica with prior commit- py gitferent primaries indicates the existence of diver-

ment quorums (strong quorums) and remaining replicasgence, caused for instance by a network partition, and
as a result, some committed operations may not appear e discuss how to handle it next.

VIEWCHANGE messages and, therefore, may be missing
from the new starting state in theeM/VIEw message.  4.6.2 Divergence across views

Finally, a misb_ehaving primary can also cause diver-_NOW assume that replica receives a message from
gence by proposing the same sequence numbers 0 difgpjicaj indicating that; > v;. This could happen due to
ferent operations, and forwarding the different choices, partition, during which different subsets changed views

to disjoint sets of replicas. independently, or due to other network and replica asyn-
o chrony. Replica requests the BwVIEwW message for

Basic Idea. Two request history orderings;,h,,...  v; from j. (The case wherg; < v is similar, with the

and th,hJZ,..., present at replicas and j respectively, exception that pushes the BwVIEw message tg in-

are calledconcurrentif there exists a sequence num- stead.)

bern such thalhin # hh; because of the collision resis- When node i receives and verifies the

tance of the hash chaining mechanism used to producNEWVIEW, v}, P)s, message, wherg is the issu-
history digests, this means that the sequence of requesitsy primary of viewv;, it compares its local history to
represented by the two digests differ as well. A replicathe sequence of OR messages obtained after ordering
compares history digests whenever it receives protocahe OR message present in theeWVIEW message



(according to the procedure described in Section 4.7)message forv. Note here that in POM and POD is
Let n, and n, be the lowest and highest sequenceone higher than the highest view number present in the
numbers of those OR messages, respectively. conflicting ORDERREQ messages, or one higher than the

S view number in the BwVIEwW componentin the case of
Case 1: py <n] Replicai is missing future requests, 5poa

so it sendsj a HLLHOLE message requesting the OR
messages betweanandn;. When these are received, it
compares the OR messagefipto detect if there was di-

Upon receiving an authentic and valid P@i€¢c
or PODusG or a POAusSG, a replica broadcasts a

vergence. If so, the replica obtainedraof of divergence VIEWCHANGE along with the triggering POM, POD, or

(POD), consisting of the two OR messages, which it canpOA message.
use to initiate a new view change. If not, it executes the The view change mechanism will eventually lead to
operations frorm; to n; and ensures that its history af- the election of a new primary that is supposed to multi-
ter executingy is consistent with th€C present in the ~ cast a N\wVIEw message. When a node receives such
NEWVIEW message, and then handles theWwW/iew  amessage, it needs to compute the start state for the next
message normally and enters If the histories do not view based on the information contained in that message.
match this also constitutes a POD. The new start state is calculated by first identifying the
highestCC present among all MwCHANGE messages;
Case 2: by <n <ny] Replicai must have the cor- thjs determines the new base history didgdor the start
responding @DERREQ for all requests with sequence sequence numberof the new view.
numbers between; andn; and can therefore check if

its history di f that which dt But nodes also need to determine how to order the dif-
'ts nistory diverges Trom that which was used o genery, oot or messages that are present in tlEevMIEW
ate the new view. If it finds no divergence, it moves to

message but not yet committed. Contained OR mes-
vj and calculates the start state based on theyMIEW g Y

i S sages (potentially including concurrent requests) are or-
message (Section 4.5). Otherwise, it generatPOa dered using a deterministic function of the requests that
and initiates a merge.

produces a total order for these requests. Having a fixed
Case 3: by > ny] Replicai has corresponding OR function allows all nodes receiving theeM/VIEW mes-
messages for all sequence numbers appearing in tH&ge to easily agree on the final order.for the concurrent
NEwVIEwW and can check for divergence. If no diver- OR presentin that message. Alternatively, we could let
gence is found, the replica has executed more requests [R€ Primary replica propose an ordering, and disseminate
a lower viewy; thanv;. Therefore, it generatesRroof it as an additional parameter of th&eWV IEw message.
of Absence (POAXxonsisting of all OR messages with  Replicas receiving the BwVIEw message then exe-
sequence numbersjn, nj] and the NWVIEW message cute the requests in the OR messages according to that
for the higher view, and initiates a merge. If divergencefixed order, updating their histories and history digests.
is found,i generates 80D and also initiates a merge.  If a replica has already executed some weak operations
Like traditional view change protocols, areplicdoes  in an order that differs from the new ordering, it first rolls
not enterv; if the NEwVIEW message for that view did back the application state to the state of the last check-
not include all ofi's committed requests. This is im- point (Section 4.8) and executes all operations after the
portant for the safety properties providing guarantees focheckpoint, starting with committed requests and then
strong operations, since it excludes a situation where rewith the weak requests ordered by the\WwVI1Ew mes-
quests could be committed i) without seeing previ- sage. Finally, the replica broadcasts &WCONFIRM

ously committed requests. message. As mentioned, when a replica collects match-
) ) ) ing VIEWCONFIRM messages ow n, andh, it becomes
4.7 Merging Concurrent Histories active in the new view.

Once concurrent histories are detected, we need to merge Our merge procedure re-executes the concurrent op-
them in a deterministic order. The solution we proposeerations sequentially, without running any additional or
is to extend the view change protocol, since many of thealternative application-specific conflict resolution pgec
functionalities required for merging are similar to thosedure. This makes the merge algorithm slightly simpler,
required to transfer a set of operations across views.  butrequires the application upcall that executes client op

We extend the view change mechanism so that viewerations to contain enough information to identify and re-
changes can be triggered by either PODs, POMs osolve concurrent operations. This is similar to the design
POAs. When a replica obtains a POM, a POD, or a POAchoice made by Bayou [35] where special concurrency
after detecting divergence, it multicasts a message of thdetection and merge procedure are part of each service
form (POMMsG,v,POM);, (PODMSG,v,POD)y, or  operation, enabling servers to automatically detect and
(POAMSG,V,POA) 4 in addition to the VEWCHANGE  resolve conflicts.



Limiting the number of merge operations. A faulty  checkpoint stable, stores this proof, and discards all or-
replica can trigger multiple merges by producing a newdered requests with sequence number lower thaong
POD for each conflicting request in the same view, orwith their corresponding client requests.
generating PODs for requests in old views where itself Also, in case the checkpoint procedure is not run
or a colluding replica was the primary. To avoid this within the interval ofTckp time units, and a replica has
potential performance problem, replicas remember th&ome not yet committed ordered requests, the replica also
last POD, POM, or a POA every other replica initiated, initiates the commit step of the checkpoint procedure.
and reject a POM/POD/POA from the same or a lowerThis is done to make sure that pending ordered requests
view coming from that replica. This ensures that a faultyare committed when the service is rarely used by other
replica can initiate a POD/POM/POA only once from clients and the sequence numbers grow very slowly.
each view it participated in. This, as we show in Sec- Qur checkpoint procedure described so far poses a
tion 5, helps establish our liveness properties. challenge to the protocol for detecting concurrent his-

] . tories. Once old requests have been garbage-collected,
Recap comparison to Zyzzyva. Zeno's view changes there s no way to verify, in the case of a slow replica (or
motivate our removal of the single-phase Zyzzyva op-3 majicious replica pretending to be slow) that presents
timization for the following reason: suppose a strongan, o|d request, if that request has been committed at that
client request RQ was executed (and committed) at se- sequence number or if there is divergence.
quence numben at 3f + 1 replicas. Now suppose there 1, 4 qqress this, clients send sequential timestamps to
was a weak view change, the new primary is faulty, anduniquely identify each one of their own operations, and
only f+1 replicas are available. A faulty replica among e aqded a list of per-client timestamps to the checkpoint
those has the option of reporting=R in a different or-  osqq 005 representing the maximum operation each
der in its VEWCHANGE message, which enables the jiant has executed up to the checkpoint. This is in con-
primary to order RQ arbitrarily in its NEWVIEW Mes- ot \yith previous BFT replication protocols, including
sage; this is possible because only a single—potentiallyy ,,\ 4 \where clients identified operations using times-

fa_lulty—replica ne_zed report any requ_est _d_uring a Zenotamps obtained by reading their local clocks. Concretely,
view change. This means that linearizability is wolateda replica sends(CHECKPOINT,v, M, hy, App CSelo
T 3 ) J 1

forthis strong, committed requestR. Althoughitmay —here csetis a vector of(c,t) tuples, wherd is the
be possible to deS|g_n a more involved view change_tqimestamp of the last committed operation from
preserve such orderings, we chose to keep things sim- This allows us to detect concurrent requests, even if

ple instead. As our results show, in many settings Wher%ome of the replicas have garbage-collected that request.

e e SUPPOSe 3 PG COES an OF Wi seerce
) , - er n that corresponds to clierts request with times-
|r?creased throughput due FO the Zyzzyva's Opt'm'zed?amptl. Replicai first obtains the timestamp of the
single-phase request commitment. last executed operation afin the highest checkpoint
. tc=CSelc]. If t; <t then there is no divergence since
4.8 Garbage Collection the client request with timestantp has already been
The protocol we have presented so far has two importantommitted. But ift; > tc, then we need to check if some
shortcomings: the protocol state grows unboundedly, andther request was assignecdoroviding a proof of diver-
weak requests are never committed unless they are fogence. Ifn <M, then the GiECKkPOINTand the OR form
lowed by a strong request. a POD since some other request was assignétise, we

To address these issues, Zeno periodically takesan perform regular conflict detection procedure to iden-
checkpoints, garbage collecting its logs of requests antify concurrency (see Section 4.6).
forcing weak requests to be committed. Note that our checkpoints become stable only when

When a replica receives alROERREQ message from there are at leastf2+ 1 replicas that are able to agree. In
the primary for sequence numbbdt, it checks if M the presence of partitions or other unreachability situa-
mod CHKP.INTERVAL = 0. If so, it broadcasts the tions where only weak quorums can talk to each other, it
ComMIT message corresponding b to other repli- may not be possible to gather a checkpoint, which im-
cas. Once a replica received 2 1 ComMmIT mes-  plies that Zeno must either allow the state concerning
sages matching iv, M, and hy, it creates the com- tentative operations to grow without bounds, or weaken
mit certificate for sequence numbbt. It then sends its liveness guarantees. In our current protocol we chose
a (CHECKPOINT,V,M,hy,App g, to all other replicas. the latter, and so replicas stop participating once they
The Appis a snapshot of the application state after ex-reach a maximum number of tentative operations they
ecuting requests upto and includik When it receives can execute, which could be determined based on their
f + 1 matching GIECKPOINT messages, it considers the available storage resources (memory as well as the disk



space). Garbage collecting weak operations and the rene correct replica acknowledged two conflicting histo-
sulting impact on conflict detection is left as a future ries — a contradiction establishés4).

work. Checkpointing. Note that our garbage collection
scheme may affect propert$1). the sequence of tenta-
tive operations maintained at a correct replica may poten-
tially include a committed but already garbage-collected

In this section, we sketch the proof that Zeno satisfies th@Peration. This, however, cannot happen: each round of
safety properties specified in Section 3. garbage collection produces a checkpoint that contains

In Zeno, a (weak or strong) response is based on iderihe latest committed service state and the logical times-
tical histories of at leasf + 1 replicas, and, thus, at tamp of the latest committed operation of every client.

least one of these histories belongs to a correct replica>Nce NO correct replica agrees to commit a request from

Hence, in the case that our garbage collection schem Cliént unless its previous requests are already commit-
is not initiated, we can reformulate the safety require-€d the checkpointimplies the set of timestamps of all

ments as follows{(S1) the local history maintained by committed requests of_each client. Ifa_replica receives an
a correct replica consists of a prefix of committed re-°rdered requestof a cliencorresponding to a sequence
quests extended with a sequence of speculative requesfié!Mper preceding the checkpoint state, and the times-
where no request appears twi¢2) a request associ- tamp of this request is no Iatgr tha_n the last committed
ated with a correct client appears, in a history at a '€duest o, then the replica simply ignores the request,
correct replica only ifc has previously issued the re- concluding that the rquest|s aIregdy comrmtted. Hence,
quest, andS3) the committed prefixes of histories at NC request can appear in a local history twice.
every two correct replicas are related by containment .
and(S4)at any time, the number of conflicting histories 5.1 Liveness
maintained at correct replica does not exceetkhist= To show that Zeno complies with the liveness properties,
[(N—f")/(f — f'4+1)], wheref’ is the number of cur- we first establish that every weak request issued by a cor-
rently failed replicas anil is the total number of replicas rect client is complete if a weak quorum of correct repli-
required to tolerate a maximum offaulty replicas. Here cas is eventually synchronous, and then we show how
we say that two histories are conflicting if none of themthe existence of a strong eventually synchronous quorum
is a prefix of the other. implies that each weakly complete request or a strong re-
PropertiegS1)and(S2)are implied by the state main- questissued by a correct client is committed. We assume
tenance mechanism of our protocol and the fact that onlyhat correct replicas and clients can eventually reliably
properly signed requests are put in a history by a correatcommunicate.
replica. The special case when a prefix of a history is .
hidden behind a checkpoint is discussed later. 5.1.1 Weak partitions

A committed prefix of a history maintained at a correct consider’, an eventually synchronous set 6f+ 1
replica can only be modified by a commitment of a newcorrect replicas and let client issue a weak request
request or a merge ope_ratlon. The sub-protocol of ZenQo’ 0,t,c). By contradiction, suppose that propeftyl)
responsible for committing requests are analogous 1o thgoes not hold, i.e., the client's request never completes.
two-phase conservative commitment in Zyzzyva [24],By the client’s protocolc keeps periodically rebroad-
and, similarly, guarantees th_at al! committed requests argasting the request until it receives at lefist 1 match-
totally ordered. When two histories are merged at a coring responses from distinct replicas. Recall that correct
rect replica, the resulting history adopts the longest comglients are well formed. Thus,has earlier completed all
mitted prefix of the two histories. Thus, inductively, the requests with timestamp’s< t. Since every complete re-
committed prefixes of all histories maintained at correctgyest involves at least one correct replica, we know that
replicas are related by containm¢88) at least one correct replica stored the corresponding or-

Now suppose that at a given time, the number of congered requests in its local history. Periodic exchanges of
flicting histories maintained at correct replica is more specRepLY messages (e.g., during checkpoints) ensure
than maxhist  Our weak quorum mechanism guaran- that all such ordered requests will eventually reach every
tees that each history maintained at a correct process {grrect replica if1’.
supported by at least + 1 distinct processes (through  Now consider timety after which’ becomes syn-

sending $ECREPLY and RePLY messages). A correct chronous, i.e., aftety, round-trip delays between every
process cannot concurrently acknowledge two conflictyg correct replicas i’ do not exceea.

ing histories. But wherf’ replicas are faulty, there can
be at most (n— f")/(f — f'+1)] sets off + 1 replicas  View changes for non-responsive partitions. By the
that are disjoint in the set of correct ones. Thus, at leasteplica’s protocol, each correct replica that receives the

5 Correctness



request forwards it to the primary of its current view view change, the outstanding requestafill reach the
and sets the timer. If the timer expires before the corprimary in’, the primary will generate an ordered re-
responding ordered request is received from the primarguest that will be sustained by at ledst 1 replicas in
(which can only happen aftéy if the primary is faulty), a timely manner, and at leaét4- 1 matching responses
the replica initiates a view change protocol. If no correctwill reach the client — a contradiction. Henog,1) is
replica inM’ received the ordered request on time, thenensured.
at leastf + 1 correct replicas i’ will commit to a view
change. Otherwise, if at least one correct replic@lin
received the ordered request, then every correct replickinally, consider time after which a “strong” quorum
will receive the ordered request in the current view sincecontaining Z + 1 correct replicas becomes synchronous.
correct replicas can obtain the OR corresponding to éAssume, by contradiction, that some strong or weakly
request from other correct replicas. Thus, either evergomplete reques, s,t,c) never gets committed. First,
correct replica irfl’ will send a speculative responsecto  since a correct client keeps retransmitting a request until
(based on the history proposed by the primary), or everyt is complete, our protocol ensures that an ordered re-
correct replica i1’ will switch to the next view. Inthe quest containingo,s,t,c) is eventually adopted by some
former case, since never completes its requedt+1  correctreplica. Eventually, the ordered request will reac
speculative responses based on the ordered request fravery correct replica ifil’, e.g., during checkpointing or
the same view and received lsydo not match, which merge operations. As long as the set of ordered but not
constitutes a POM (proof of misbehavior) against the pri-yet committed requests is not empty, correct replicas will
mary and will be used as a basis for a view change. periodically initiate the checkpointing sub-protocol in o
Thus, as long as does not complete its operation, the der to commit these requests. As we showed above, all
partition goes through consequent view changes. Novgorrect replicas in the partition will eventually stabdiz
we need to show that the view changes do not indefiat the same view with a correct primary. Thus, eventu-
nitely prevent replicas ifll’ from making progress. We ally, 2f 41 correct replicas will succeed in committing
observe first that, since primaries are assigned to viewd!l outstanding ordered requests proposed by the primary
in a round-robin fashion, the correct replicasfAwill  and these requests will include,t,c)—a contradiction.
eventually reach a view whose primary is correct. ButHence(L2) is ensured.
what about faulty or stale replicas with conflicting histo-
ries? C_:an th_ey cause a view change even when the cug  Evaluation
rent primary is correct? In fact, the answer is yes, but we
show below that they can only cause a bounded numbepe have implemented a prototype of Zeno as an exten-
of such view changes. sion to the publicly available Zyzzyva source code [26].
Our evaluation tries to answer the following questions:
View changes for divergent histories. When areplica (1) Does Zeno incur more overhead than existing proto-
i finds out that another replicais in a fresher view, i cols in the normal case? (2) Does Zeno provide higher
adoptsv as its view and tries to reconcile the histories. availability compared to existing protocols when there
If, after adopting the most recent commit certificaie ~ are more tharf unreachable nodes? (3) What is the cost
realizes that the same sequence numbemis assigned of merges?
to two different (not yet committed) requestsi a&nd |,
it can use this as aevidencdor a view change.

5.1.2 Strong and weakly complete requests

Experimental setup. We setf = 1, and the minimum
number of replicas to tolerate N, = 3f + 1= 4. We vary
view: different requests assigned to the same sequen?ﬁe number of clients to increase load. Each physical ma-

' . ) . hine has a dual-core 2.8 GHz AMD processor with 4GB
number by the same primary (or different primary) ap-

f i 2.6.20 Li k [. Each repli
pear as a POM, POA, or POD. Furthermore, once twoO memory, running a NUX kernel. =acn replica

di t histories fromand q i f as well as a client runs on a dedicated physical machine.
|v§rger;] IStones fromand] ?r:e usg. as eV|t he.ntce_ °" We use Modelnet [37] to simulate a network topology
aview change in a given view(these divergent histories consisting of two hubs connected via a bi-directional link

are part .Of POM’. POA’. or or PO.D message), hIStorIesunless otherwise mentioned. Each hub has two serversin
of i and j in previous views are ignored. Thus, even-

wally. fault d stal i i t of b ¢ all of our experiments but client location varies as per the
uatly, faully and staie repficas witl run out of pIeces o experiment. Each link has one-way latency of 1 ms and
evidence and the correct replicadihwill reach a view

. : s . a100 Mbps bandwidth.
with a correct primary iffl’. Since each correct replica
maintains a set of received but not yet processed clientsTransport protocols. Zyzzyva, like PBFT, uses multi-
requests that eventually include the request,afnd al-  cast to reduce the cost of sending operations from clients
ways tries to process the requests before taking part in & all replicas, so it uses UDP as a transport protocol and



implements a simple backoff and retry policy to handle | Protocol | Batch=1 | Batch=10|

message loss. This is not optimized for periods of con- Zyzzyva (single phase) 62 Kops/s| 88 Kops/s
gestion and high message loss, such as those we ante Zeno (weak) 60 Kops/s| 86 Kops/s
cipate during merges when the replicas that were parti- Zeno (strong) 40 Kops/s| 82 Kops/s

tioned need to bring each other up-to-date. To address Zyzzyva (commit opt)| 40 Kops/s| 82 Kops/s
this, Zeno uses TCP as the transport layer during the

merge procedure but continues to use Zyzzyva's UDP-
based transport during normal operation and multicast-
ing communication that is sent to all replicas. 6.2.1 Maximum throughput in the normal case

Table 2: Peak throughput of Zeno and Zyzzyva.

Partiti We simul K . b We compare the normal case performance of Zeno with
) artlr':lon. h Es}:mu ate T]e“’\rllor \EJvamtlonsh ):jsepgrat- nyzzyva. In both systems we used the optimization of
Ing the two hubs from each other. We vary the duration o batching requests to reduce protocol overhead. In this

t_he partitions from 1 to 5 minutes, based on the Observaéxperiment, the clients and servers are connected by a
tion by Chan_dra etal .[1.3] that a large fraction 15%) 1 Gbps switch with 0.1 ms round trip latency. We ex-
(S);S;:V(;’g.rk disconnectivity events range from 30 to 500pect the peak throughput of Zeno with weak operations
to approximately match the peak throughput of Zyzzyva
. since both can be completed in a single phase. However,
6.1 Implementation the performance of Zeno with strong operations will be

Replacing PKI with MACs.  Our Zeno prototype uses Iowe_r than the peak throughput (_)f Zyzzyva since_Zeno
MAGCs instead of the slower digital signatures to imple- 'équires an extra phase to commit a strong operation.
ment message authentication for the common-case, but Our results presented in Table 2 show that Zeno
still uses signatures for view changes. Using MACs in-and Zyzzyva's throughput are similar, with Zyzzyva
duces some small mechanistic design changes over trehieving slightly (3-6%) higher throughput than Zeno’s
protocol description in Section 4; these changes are staribroughput for weak operations. The results also show

dard practice in similar protocols including Zyzzyva, and that, with batching, Zeno's throughput for strong op-
are presented in Appendix A. erations is also close to Zyzzyva's peak throughput:

Zyzzyva has 7% higher throughput when the single

Merge. Replicas detect divergence by following the al- phase optimization is employed. However, when a single
gorithm specified in Section 4.7. We implemented anreplicais faulty or slow, Zyzzyva cannot achieve the sin-
optimization to the merge protocol where replicas firstgle Phase throughput and Zeno’s throughput for strong
move to the higher view and then propagate their locaPpPerations is identical to Zyzzyva’s performance with a
uncommitted requests to the primary of the higher view.faulty replica.

The primary of the higher view orders these requestsasi§ 2 o partition with no concurrency

they are received from the client and hence merges these o ]
requests in the history. For all the remaining experiments, we use Modelnet

setup and disable multicast since Modelnet does not sup-
6.2 Results port it. We use a client po_pulation of 4 nodes, each send-

ing a new request of minimal payload (2 Bytes) as soon
We generate a workload with a varying fraction of strongas it has completed the previous request. This generates
and weak operations. If each client issued both strong steady load of approximately 500 requests/sec on the
and weak operations, then most clients would block soosystem. This is similar to an example SLA provided in
after network partitions started. Instead, we simulate twaDynamo [16]. We use a batch size of 1 for both Zyzzyva
kind of clients: (i) weak clients only issue weak requestsand Zeno, since it is sufficient to handle the incoming
and (ii) strong clients always pose strong requests. Thisequest load.
allows us to vary the ratio of weak operations (denoted In this experiment, all clients reside in the first LAN.
by a) in the total workload with a limited number of We initiate a partition at 90 seconds which continues for
clients in the system and long network partitions. Wea minute. Since there are no clients in the second LAN,
use a micro-benchmark that executes a no-op when thihere are no requests processed in it and hence there is no
executeupcall for the client operation is invoked. concurrency, which avoids the cost of merging. Replicas

We have also built a simple application on top of Zeno,with id 0 (primary for view initial view 0) and 1 reside

emulating a shopping cart service with operations to addin the first LAN while replicas with ids 2 and 3 reside in
remove, and checkout items based okeg-valuedata the second LAN. We also present the results of Zyzzyva
store. We also implement a simple conflict detection ando compare the performance in both normal cases as well
merge procedure. as under the given failure.
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Figure 3: Two replicas are disconnected via a partition,. . . -
that starts at time 90 and continues for 60 seconds. Péﬂd'cates how soon after healing the partition can strong

rametera represents the fraction of weak operations inOpE_rat'OnZ be proctestshe d agallr:. We ob that K
the workload. Note that the throughput of weak and Igure = presents the results. Ve observe that wea

strong operationsin Zeno is presented separately for cla@perations are _always available in th.'s exp_erlment since
ity. all weak operations were completed in the first LAN and

the replicas in the first LAN are up-to-date with each
Varying a. We vary the mix of weak and strong opera- other to process the next weak operation. Strong oper-
tions in the workload, and present the results in Figure 3ations are unavailable for the entire duration of the par-
First, strong operations block as soon as the failure startgtion due to unavailability of the replicas in the second
which is expected since not enough replicas are reach-AN and the additional unavailability is introduced by
able from the first LAN to complete the strong opera- zeno due to the operation transfer mechanism. However,
tion. However, as soon as the partition heals, we observghe additional delay is within 4% of the partition duration
that strong operations start to be completed. Note als@12 seconds for a 5 minute partition). Our current proto-

that Zyzzyva also blocks as soon as the failure starts anfjpe is not yet optimized and we believe that the delay
resumes as soon as it ends. could be further reduced.

Second, weak operations continue to be processed and
completed during the partition and this is because Zen®/arying request size. In this experiment, we simulate
requires (forf = 1) only 2 non-faulty replicas to com- a partition for 60 seconds but increase the payload sizes
plete the operation. The fraction of total requests comfrom 2 Bytes to 1 KB, with an equally sized reply. The
pleted increases asincreases, essentially improving the cumulative bandwidth of requests to be transferred from
availability of such operations despite network partiion one LAN to the other is a function of the weak request

Third, when replicas in the other LAN are reachableoffered load, the size of the requests, and the duration of
again, they need to obtain the missing requests from théhe partition. With 60 seconds of partition and an offered
first LAN. Since the number of weak operations per-load of 500 reg/s, the cumulative request payload ranges
formed inthe first LAN increases asincreases, the time from approximately 60 KB to 30 MB for 2 Bytes and
to update the lagging replicas in the other partition alsol KB request size respectively. The results we obtained
goes up; this puts a temporary strain on the network, evare very similar to those in Figure 3 so we do not repeat
idenced by the dip in the throughput of weak operationghem. These show that the time to bring replicas in the
when the partition heals. However, this dip is brief com-second LAN up-to-date does not increase significantly
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“ ] strong operations only.

Whena = 25%, we have only one client sendiwgak
operations in one LAN. Since there are no conflicts, this
graph matches that of Figure 3.

Whena > 50%, we have at least two weak clients, at

least one in each LAN. When a patrtition starts, we ob-
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Time (sec) required. In our experiment, since replicas with ids 2

) - ) and 3 reside in the second LAN, two view changes were
Figure 5: Network partition for 60 seconds starting at required (to make replica 2 the new primary).
time 90 seconds. Note that the throughput of weak and When the partition heals, replicas in the first view de-

strong operationsin Zeno is presented separately for clagct the existence of concurrency and construct a POD,

ity. since replicas in the second LAN are in a higher view
with the increase in request size. Given that we have 10Qwith v = 2). At this point, they request a#\WVIEW
Mbps links connecting replicas to each other, bandwidtifrom the primary of view 2, move to view 2, and then
is not a limiting resource for shipping operations at thesepropagate their locally executed weak operations to the

offered loads. primary of view 2. Next, replicas in the first LAN need
N _ to fetch the weak operations that completed in the sec-
6.2.3 Partition with concurrency ond LAN and needs to complete them before the strong

In this experiment, we keep half the clients on each sid@Perations can make progress. This results in additional
of a partition. This ensures that both partitions observeél€lay before the strong operations can complete, as ob-

a steady load of weak operations that will cause Zen$€rved in the figure.

to first perform a weak view change and later merge the

concurrent weak operations completed in each partitionvarying partition duration.  Next, we simulate parti-
Hence, this microbenchmark additionally evaluates theions of varying duration as before, far=75%. Again,
cost of weak view changes and the merge procedure. A4€ measure the unavailability of both strong and weak
before, the primary for the initial view resides in the first Operations using the earlier definition: unavailability is
LAN. We measure the overall throughput of weak andthe duration for which the throughput in either parti-

strong operations completed in both partitions. Again,tion was less than 10% of average throughput before
we compare our results to Zyzzyva. the failure. With a longer partition duration, the cost of

the merge procedure increases since the weak operations

Varying o. Figure 5 presents the results for the from both partitions have to be transferred prior to com-
throughput of different systems while varying the value pleting the new client operations.
of a. We observe three main points. Figure 6 presents the results. We observe that weak

When a = 0, Zeno does not give additional bene- operations experience some unavailability in this sce-
fits since there are no weak operations to be completedhario, whose duration increases with the length of the
Also, as soon as the partition starts, strong operations angartition. The unavailability for weak operations is
blocked and resume after the partition heals. As abovewithin 9% of the total time of the partition.
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Figure 6: Varying partition durations with concurrent Figure 7: Varying execution cost of operations with in-
operations. Baseline represents the minimal unavailabilereasing request load. 60 second partition duration.
ity expected for strong operations, which is equal to th

ition durai €quickly start processing strong operations soon after par-
partition duration.

titions heal.
The unavailability of strong operations is at least the
duration of the network partition plus the merge cost
(similar to that for weak operations). The additional un- In this experiment, we allow each client to issue a mix of
availability due to the merge operation is within 14% of strong and weak operations. Note that as soon as a client
the total time of the partition. issues a strong operation in a partition, it will be blocked
until the partition heals. We use a client population of 40
Varying execution cost and request load. In this ex-  nodes. Each client issues a strong operation with proba-
periment, we vary the execution cost of each operation ability p, weak operations with probability.®— p, and
well as increase the request load, by increasing the nunexits from the system with a fixed probability of20
ber of clients, to estimate the cost of merges when théVe implement a fixed think time of 10 seconds between
system is loaded. For example, the system was operaeperations issued by each client. The think times and
ing at peak cpu utilization with 20 clients and operationsthe exit probability are obtained from the SpecWeb2005
with 200 us/operation or more. Here, we set= 100%.  banking benchmark [11]. Next, we vagyto estimate
We present results with a partition duration of 60 secondshe impact of failure events such as network partitions on
in Figure 7. We observe that as the cost of operationshe overall user experience. To give an idea of reference
system load increases, the unavailability of weak operavalues forp, we looked into the types and frequencies
tions also goes up. This is expected because the set of distinct operations in existing benchmarks. In an e-
weak operations performed in one partition must be rebanking benchmark, and assigning the billing operations
executed at the replicas in the other partition during theo be strong operations, the recommended frequency of
merge procedure. As the client load and the cost of opsuch operations followg = 0.13 [11]. In the case of
eration execution increases, the time taken to re-execu@n e-commerce benchmark, if the checkout operation is
the operation also increases. In particular, when the syssonsidered strong while the remaining, such as login, ac-
tem is operating at 100% cpu utilization, the cost of re-cessing account information and customizations are con-
executing the operations will take as much as time as thsidered as weak operations, then we obfain0.05 [1].
duration of the partition, and therefore the unavailapilit Our experimental results cover these values.
in these cases is higher than the partition duration. If, We simulate a partition duration of 60 seconds and cal-
however, the system is not operating at peak utilizationgulate the number of clients blocked and the length of
the cost of merging is lower than the partition duration. time they were blocked during the partition. Figure 8
presents the cumulative distribution function of clients
Varying request size. We ran an experiment with a 5 on they-axis and the maximum duration a client was
minute partition, and varying request sizes from 2 Bytesblocked on thex-axis. This metric allows us to see how
to 1 KB. The results with different request sizes wereclients were affected by the partition. With Zyzzyva, all
similar to those shown in Figure 5 so we do not plot them.clients will be blocked for the entire duration of the par-
We observed that increasing the payload size does ndition. However, with Zeno, a large fraction of clients
significantly affect the merge duration. This is due to thedo not observe any wait time and this is because they
high speed network connection between replicas. exit from the system after doing a few weak operations.
For example, more than 70% of clients do not observe
Summary. Our microbenchmark results show that any wait time as long as the probability of performing a
Zeno significantly improves the availability of weak op- strong operation is less than 15%. In summary, this result
erations and the cost of merging is reasonable as longhows that Zeno significantly improves the user experi-
as the system is not overloaded. This allows Zeno teence and masks the failure events from being exposed

6.2.4 Mix of strong and weak operations
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with up to f Byzantine faults, the goal in SUNDR and
Figure 8: Wait time per client with varying probability BFT2F is to provide the best possible semantics in the
p of issuing strong operations. presence of a large fraction of malicious servers. In the
case of SUNDR, this means the single server can be ma-
licious, and in the case of BFT2F this means tolerating
to the user as long as the workload contains few strongrbitrary failures of up t% of the servers. Thus they

operations. associate client signatures with updates such that, when
such failures occur, all the malicious servers can do is
7 Related Work conceal client updates from other clients. This makes the

approach of these systems orthogonal and complemen-

The trade-off between consistency, availability and tol-1&"Y t© aur own. o of ) 4 ‘
erance to network partitions in computing services has  ~Nother example of a system that provides weak con-
become folklore long ago [7]. sistency in the presence of some Byzantine failures can
Most replicated systems are designed to be “strongly’be foundin [34]..I_-|owever, th_e system aims at achieving
consistent, i.e., provide clients with consistency guaranextreme availability but provides almost no guarantees

tees that approximate the semantics of a single, corre@"d relies on a trusted node for auditing.

server, such as single-copy serializability [21] or linear To our knowlt_edge, this paper is the first to conS|d¢r
ability [23]. eventually-consistent Byzantine-fault tolerant generic

Weaker consistency criteria, which allow for better replicated services.

availability and performance at the expense of letting

replicas temporarily diverge and users see inconsister8 Future Work and Conclusions

data, were later proposed in the context of replicated ser-

vices tolerating crash faults [18, 33, 35, 40]. We improveln this paper we presented Zeno, a BFT protocol that

on this body of work by considering the more challeng-privileges availability and performance, at the expense

ing Byzantine-failure model, where, for instance, it may of providing weaker semantics than traditional BFT pro-

not suffice to apply an update at a single replica, sincdocols. Yet Zeno provides eventual consistency, which

that replica may be malicious and fail to propagate it.  is adequate for many of today’s replicated services, e.g.,
There are many examples of Byzantine-fault tolerantthat serve as back-ends for e-commerce websites. Our

state machine replication protocols, but the vast majorevaluation of an implementation of Zeno shows it pro-

ity of them were designed to provide linearizable semanvides better availability than existing BFT protocols,

tics [4,9,12, 24]. Similarly, Byzantine-quorum protocols and that overheads are low, even during partitions and

provide other forms of strong consistency, such as safeperges.

regular, or atomic register semantics [30]. We differfrom Zenois only a first step towards liberating highly avail-

this work by analyzing a new point in the consistency-able but Byzantine-fault tolerant systems from the expen-

availability tradeoff, where we favor high availabilityén sive burden of linearizability. Our eventual consistency

performance over strong consistency. may still be too strong for many real applications. For
There are very few examples of Byzantine-fault toler-example, the shopping cart application does not neces-
ant systems that provide weak consistency. sarily care in what order cart insertions occur, now or

SUNDR [27] and BFT2F [28] provide similar forms eventually; this is probably the case for all operations
of weak consistency (fork and fork*, respectively) in that are associative and commutative, as well as oper-
a client-server system that tolerates Byzantine serverations whose effects on system state can easily be rec-
While SUNDR is designed for an unreplicated serviceonciled using snapshots (as opposed to merging or to-
and is meant to minimize the trust placed on that servertally ordering request histories). Defining required con-
BFT2F is a replicated service that tolerates a subset adistency peoperation typeand allowing the replication
Byzantine-faulty servers. A system with fork consis- protocol to relax its overheads for the more “best-effort”
tency might conceal users’ actions from each other, but ikinds of requests could provide significant further bene-



fits in designing high-performance systems that tolerate17]

Byzantine faults.
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ant Services. IfProceedings of ACM Symposium on Operating
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Transactions on Computer Syster26(3), 2002. Using MACs in the normal case also affects the spec-
ification of our service in the following way. Suppose
A Non-PKIl based Zeno a faulty client sends a request to a weak partition with a
corrupted authenticator such that the request verifies only
In this section, we describe a version of Zeno that useat (f + 1) replicas, out of which only one is non-faulty.
MACs in the normal case operation (i.e., for authenti-That correct replica will be responsible for forwarding
cating REQUEST, REPLY, ORDERREQ, CoMmMmIT, and  the request to other replicas during future merges. How-
CHECKPOINT messages) but continues to use PKI baseaver, since the authenticator is corrupted, the requelst wil
signatures for the view change messages. Using MACsot verify at other non-faulty replicas, causing it to be
in the normal case operation affects the request processgiropped by Zeno during subsequent merges. Therefore,
ing, conflictdetection, merge, and view change logic. Weit is possible for requests from faulty clients to appear in

describe these modifications in this section. the tentative history but to disappear from the linearized
. history of the service. In contrast, requests from correct
A.1 Request validity proof clients will always appear in the linearized history of the

A common problem in MAC based protocols is verifying Service. In order to handle this case, we modified the
client requests. For example, a faulty client can carefullymerge operation in the specification. (Figure 9).
construct an authenticator that only verifies at the pri-

. . . Transitions:
mary replica. Such a request will be assigned a sequence
number by the correct primary, but will not be verified by MERGE
. . Pre:|H| >2
other replicas and hence will be dropped. Unfortunately, Eff: select{h, i/} € H
it is impossible to detect if the corrupted authenticator is ?emzvngifgsﬁczfggg - Of
duetoa faU|ty primary ora faU|ty client. EXiSting prOtO' Of are_subset of all operatior_\s from faulty_clients
cols provide mechanisms to deal with such requests. At committedh”) := max committedh), committedh’))

) : ‘=H—{h,h}+{n"
a high level, these mechanisms ensure that all non-faulty Hi=H-{n+{)

replicas either pick the same request for execution at a

sequence number or all decide to choose a sproialp

operation. Since Zeno is based on Zyzzyva, we use th&igure 9: Modified Merge procedure for MAC-based

mechanism proposed by Zyzzyva [25]. Zeno. g represents the subset of operations issued by
Briefly, the mechanism works as follows. If a replica faulty clients.

is unable to verify a client request, it requests an authen-

tication proof from the primary. The primary responds Similarly, the liveness property of Zeno is modified as

with a proof, which can be one of the following: follows:
1. same request signed using PKI by the client (L2") Ifthere exists an eventually synchronous setf2
o o ) 1 correct server§l’, then every weakly complete
2. a validity proof, consisting of PKI signatures from request issued byaorrect clientor a strong request
f 4+ 1 replicas that have correctly verified the client issued by a correct client is eventually committed.
request

Recall that in the PKl-based Zeno, every weakly com-
pleted request from faulty clients were also guaranteed
to be eventually committed.

3. an invalidity proof, consisting of PKI signatures
from 2f 4+ 1 replicas, out of which onlyf or less
replicas correctly verified the client request

If the primary does not possess this proof, the primar)/b"2 Reply and Commit Messages

asks all replicas to check if they can verify the client We now describe the modification to how replicas con-
request. If a replica can correctly verify the request, itstruct reply and commit messages. First, backup repli-
sends a PKI signed message to the primary to confirm theas do not include the OR inEHRLY messages. Sec-
validity of the request, otherwise it responds with an “au-ond, backup replicas also do not include the OR in the
thentication failure” message, also signed with PKI. TheComMIT message. Both are due to inherent weakness



of MACs—even if a replica or a client detects misbehav-other replicas in the partition. Otherwise, non-faulty
ior of the primary, others may not be able to verify it. replicas suspect divergence and initiate a view change.
These modifications are identical to how Zyzzyva oper-

ates when using MACs. Divergence in the same view Suppose replica in

. . view vj receives a messagefrom replicaj for sequence
A.3  Conflict Detection numbern and view y. ngere,m is F:eithér an C;]IR ora
The conflict detection procedure in the PKI version hadCoMMIT.
three subcases: (i) Proof of Misbehavior (POM), (ii) Algorithm 1 presents the logic for detecting conflicts
Proof of Divergence (POD), and (iii) Proof of Absence within the same view, i.ey; = v;.
(POA). Below, we consider the implication of using Each replica maintains two two-dimensional arrays,
MACs on these subcases and show that POM/POD/PO#natchingHistory and divergentHistory , to
do not guarantee that conflicts will be detected. detect conflicts. We first describe how these arrays

POM/POD A POM (POD iall . ¢ are initialized. When a replica receives an OR from
( ) essentially consists of two the primary with id k for n, it stores the OR in

OR messages for the same sequence number thatare s ; ;

by the same (different) primary and that have been asmtchmngstory[n][k]
signed different requests. With PKI, if one non-faulty
replica collects a POM (POD), it can convince other non-
faulty replicas of the primary’s misbehavior and trigger
a merge. Unfortunately, MACs do not provide this capa-
bility since an OR that conflicts with the local OR stored

atareplica may notverify correctly at the replica. There'history chain digest identical to the history chain digest i

fore, a faulty primary can keep non-faulty replicas from . . . _
detecting divergence and no POM (POD) is generateé1as received from the primary in the OR fotthe replica

: . .~ stores the messageiimatchingHistory[n][j] f
by any non-faulty replica. Even if a non-faulty replica "o ooy by the same primary but with a different his-
is able to generate a POM (POP)’ we can not guara_nte%ry is received, then the primary is faulty, and replica
that other non-faulty replicas will generate the identical.

POM (POD) since the conflicting OR’s may not verify Initiates a View change._ I a@v”v.m is received from_
: another replica with a different history, then the replica
atall non-faulty replicas.

stores the messagedivergentHistory[n][j]
POA Since a POA contains the ORs from an earlier When thed[n] timer expires, replicas calculate the

If a replica expects to commit at e.g., for generating
a checkpoint ah or when the request assignedrtds a
strong operation, then th&n] timer is started. When a
replicai sends a ©OMMIT message, it stores the®mIT
message inmatchingHistory[n][i] . When a
replicareceives a@uMIT message from replicawith a

view that spans the ORs contained in thewl/iIew  Size of these arrays. LghatchingHistory[n] =M,
message, the ORs in the POA may not verify correctlymeaning thaM replicas share a matching history for se-
at other non-faulty replicas. Therefore, POAs also shargluence numbar. Let [divergentHistory[n] |=D,
the same problem as POM/PODs. meaning thaD replicas have divergent histories for

] ) Let C = M + D, which represents the total number of
A.3.1 MAC-based conflict detection other replicas a local replica is able to communicate with

We now present a new conflict resolution procedure thaithin & time period. Then, the replica checks that:

works with MACs. o
1. M > (2f +1) // which implies C> (2f 4 1)

Overview In traditional BFT protocols, if replicas are

unable to commit requests, they can trigger a view 2. (C<2f+1)A (D ==0)

change. This is important for detecting a faulty primary

that sends either a divergent history in ORs or sends ORs |If either of these conditions is satisfied, the replica
that do not correctly verify at correct replicas. By check-concludes that there is no divergence. Otherwise, the
ing that at least 2+ 1 replicas have verified and received replica suspects divergence and initiates a view change.
identical history in the ORs, existing protocols ensure A careful reader will ask: why do we have thdimer
that a faulty primary that sends corrupted MACs or in-and the condition oivl andD in the MAC-version of the
consistent ORs is eventually replaced. At a high levelprotocol, compared to conflict detection in the PKI ver-
we use a similar idea to detect conflicts. In a strong parsion, where simple comparison of history chain digest
tition, replicas check if they can commit requests. Oth-was enough? The reason is intimately tied to the weaker
erwise, non-faulty replicas suspect divergence and initiproperties of MACs compared to PKI signatures. We rely
ate a view change. In a weak partition, replicas checlkon our synchrony assumption to ensure that, withindthe

if the history in the OR they received from the primary time period, every pair of non-faulty replicas can com-
matches the history present in the OR receivedally municate with each other. If there is divergence in the



Algorithm 1 Divergence in the same view;(¥ vj) gence introduced by a faulty primary will be de-

1: // mis either artOR or a COMMIT message tected and view change initiated.
2: it mis not properly authenticatdtien Note that it is also necessary to require-= 0. Itis
3 Rewrn. S . not sufficient to havéM > f + 1 in a weak partition
4/l Let remoj[,e re_phcas id be . (C < 2f 4+ 1). To see this, consider the case where
o .// Assume i's highest sequence numbekigngs out of f + 1 replicas that have matching historiés,
6:if N> Mhignestthen are faulty. These faulty replicas may not respond,
7:Multicast fillHole for [Mhignes+ 1, n. Return. preventing the client from receivinig+ 1 matching
8 else . replies, which violates our liveness requiremieht
o (/ WE.} must have th@RDERREQ for n. Call it m Ensuring that no divergence exists among replicas
10:if mis ORthen L . during a weak partition prevents this problem.
11: /l Compare histories to detect divergence
12: if m.h# m;.hthen However, requiring identical history at all replicas
13 [* History is divergent. BottOR’s are sent introduces a potential liveness problem. Suppose a
by same primary, so replace it.*/ faulty replica sends a @vmIT with a history that
14: Initiate view change. Return. is divergent from the history sent by the correct pri-
15:  if mis ComMIT then mary. The non-faulty replicas will suspect the cor-
16: if m.h# m;j.hthen rect primary to be faulty and trigger a view change,
17 [* History is divergentORandCoMMmIT are even when the primary is correct. The view change
sent by different replicas. Therefore, does not affects performance but does not violate the liveness
prove that primary is faulty.*/ guarantee since Zeno makes progress in between
18: Storemin divergentHistory[n][j] . view changes (Section A.4).
19: else
20: I Hlstory matchgs . . Divergence across views So far we have presented
21: Storemin matchingHistory[n][j]

the conflict detection procedure for replicas in the same

history of non-faulty replicas, neither of the above con-
ditions will hold, causing a view change to be initiate
and hence a merge of the divergent histories.

We now look at these conditions in detail:

1. Assume that all non-faulty 2+ 1 or more) repli-

. Assume that fewer thanf2+ 1 non-faulty repli-

view. Now consider the case where replicas are in
d, different views (Algorithm 2). When replica re-
ceives a messagm from replica j, it checks if the
remote view inm is higher than the local view. If
so, i requests the BwVIEw from j. If the local
view is higher, on the other hand, thénsends the
local NEwVIEW to j. When a replica receives the
NEwVIEW message for a higher view, it verifies the
pnessage, and then moves to the higher view. At this

the OR that the primary sent, for a total of 2 1 point, the replica removes all previous state for conflict
' detection; i.e, it clearsnatchingHistory[][] and

replicas with matc_hlng history. OtherW|se, reql.JeStSdivergentHistory[][]  cancels thed]] timers,
can not be committed because of divergence in the . .
history of non-faulty replicas and view chanae mustand proceeds according to the merge procedure described
be ini}t/iated The?/efofeM > 2f +1 and r?ence in Section A.5. Note that it is safe to discard these ar-
C>2ft1 ' = rays and timers since, ondet 1 non-faulty replicas are

- ' synchronous in the same view, any divergence will be
detected using the procedure for detecting divergence in

nthe same view.

cas in a partition can eventually communicate with
each other ind time. For committing requests, the
2f CoMMIT messages sent by replicas must matc

cas can eventually communicate with each other i
J time (a weak partition). To guarantee progress : _ i
for weak operations, we require at ledst 1 non-  Algorithm 2 Divergence across viewsi(y v;)
faulty replicas. However, if the primary is faulty, it~ 1: / m s either anOR or a COMMIT message
can send divergent histories in the OR’s to different 2: if mis not properly authenticatetien

replicas, which will cause the reply frofr+ 1 non- 3 Return.
faulty replicas to not match, and therefore prevent 4: if vj > vjthen
the weak operations from completing at clients. 5. Ask for NEWVIEW message. Return.

6: if vj <vjthen

By requiringD == 0, we require that all reachable Send our NEWVIEW message. Return

replicas have identical history. In a synchronous
weak partition, this condition ensures that diver-




A.3.2 Impact on safety progress as long &s+ 1 non-faulty replicas are syn-
chronous and hence maintains its liveness guaran-

The safety guarantee of Zeno for strong operation still .
ee.

holds since the conflict detection protocol described

above does not change how replicas commit operations. ] )
The argument of safety for weak operations directly Différent views  We have so far seen that a faulty pri-

follows the argumentin the PKI version. The weak oper-Mary will be eventually replaced as long as enough non-

ations still require at leagt+ 1 matching replies. Anon- faulty replicas are in the same view and synchronous.

faulty replica does not maintain two concurrent histories NOW consider the case where replicas are in different
n—| | views. In this case, replicas from the lower view will

therefore, a_lt mosnaxh|st: Lf+l‘*\f’\J concgrrentmsto— request the BwVIEw message but will continue to op-
ries can exist in the presence Bffaulty replicas. erate in their current view. Once aeM/VIEw message
A.3.3 Impact on liveness is received, a replica can immediately check its validity
. . since it is signed using PKI), and move to the higher
With res_pect t(.) liveness, we n_eed to argue that, when %iew. If there are at least + 1 non-faulty replicas in a
faulty primary introduces conflicts, eventually, the con- synchronous partition, each non-faulty replica will move

flicts are detected and view change is initiated. Also, we 4, highest view of any given non-faulty replica. At
need to argue that progress is made when the primary that point, if the primary is correct, the weak operations

non-faulty. can complete or divergence will be detected and a view
Same view Assume that all replicas are in the same change triggered.

view. We need to ensure that: (i) view changes are initi-

ated for the faulty primary in a strong partition, (i) view A.4 View change

changes are initiated for the faulty primary in a weak par-
tition, and (iii) progress is made when the primary is non-
faulty.

Since Zeno is based on Zyzzyva, we first describe
Zyzzyva's view change protocol when MACs are used
in the normal case. Note that the view change protocol

1. Assume an eventually synchronous strong partitiof"€Ssages are signed using PKI signatures.
with at least 2 + 1 non-faulty replicas and a faulty .
primary. If replicas are unable to commit opera- A-4-1 View Change in Zyzzyva

tions, therM < 2f +1, since otherwise replicas will \when a replica suspects the current primary to be
be able to commit requests. Hence, if there is diver'fauny, it sends a IKATETHEPRIMARY message to
gence, correct replicas will initiate a view change. || other replicas. Once replica receives f + 1
|[HATETHEPRIMARY messages, it gathers a proof for its
with at leastf + 1 correct replicas and a faulty pri- r]ocal commit certificate (C_C) and checkpqint_ certificate
mary. Suppose a correct client does not receivé)y requestlng all other replicas to.sendthelrglgnature for
f + 1 matching replies. When replicas exchangethe highest CC an.d.the check.pomt that replidacally
the CoMMIT messages (e.g., during the checkpointpossess?_s' I rephcahgs rec-e|ved. an or_der request for
the specified CC, then it replies with a signature for that

interval), correct replicas will obtain at least one order reqauest. If reolica has sent the checkpoint mes
ComMIT message that does not match the history d ' plica P

it received in the OR from the primary. This en- sage previously thepresponds with a signature for that

sures thaD > 0, causing all correct replicas in the Creetgkt?gnc;)ri(renpiltlzcdo?r?éd;rict 1()?:&”;1%{;5;; Cor':(;fs
weak patrtition to initiate a view change. P P P :

Once replica has these proofs, it sends a view change

3. Assume an eventually synchronous weak partitionimessage to the new primary.
with at leastf + 1 correct replicas, the primary is ~ The new primary waits to receive f2+ 1 non-
correct, and at least one replica is faulty. A faulty conflicting view change messages. Two view change
replica can send a@mIT message with history messages are conflicting if they contain CC proofs for
that diverges with the history sent by the correct pri-different requests at the same sequence number. Since
mary. This will causé® to be greater than 0, trigger- CC proposed by non-faulty replicas do not conflict, and
ing the non-faulty replicas to initiate a weak view if the wait time is sufficiently long, a non-faulty pri-
change. However, replicas give priority to complet- mary will obtain 2f + 1 non-conflicting view change
ing ORs in the same view before processing themessages.
view change messages (see Section 4.5). There- The new primary then constructs &WVIEW mes-
fore, even though faulty replicas can cause continusage based on thef 2- 1 non-conflicting view change
ous view changes in a weak partition, Zeno makesnessages and sends it to other replicas.

2. Assume an eventually synchronous weak partitio



A.4.2 Challenge for Zeno retransmissions will lead to continuous view changes.

For strong partitions, Zeno keeps the structure of thén Zeno, however, we must avoid these view changes

view change similar to Zyzzyva. However, view changess'nce weak operations must complete efficiently evenin a

in weak partitions are challenging. Recall that a non-Weak partition. W_hen a 5”009 operation is receiyed and
faulty replica waits to receive at least+ 1 proofs (in- ordered_by the primary, replicas start the gommlt phase
cluding its own) for its CC and the checkpoint before by send!ng a ©MM|T message. The cpnfhct detection

sending a VEWCHANGE message. This poses a chal- mec_hamsm described er_;lrller is also_ triggered wht_—:‘ne_ver
lenge for weak partitions with less thafi 2 1 non-faulty replicas intend to commit an operation. If a conflict is

replicas. In this situation, a replica with the highestd_ete_CtEd’V'eW change is trlgg_ere_d. (_)therwse, if no con-
CC may not obtain a proof since remaining non-faultyﬂ'Ct is detected, the retransmission is neglected and un-

replicas in the partition may not have received the order-ne:'essary w_t:vx;lchangesf are avoided. dered. th |
ing corresponding to the CC and other replicas could be TOWEVer | the operation is notyet ordered, the usua
faulty and not respond. Therefore, the new primary majoglc is followed, i.e., a replica forwards the operation to

not get enough view change messages to construct tﬁge primary and starts the KIETHEPRIMARY timer. If

NEWVIEW message, compromising the liveness of theordering is not received before the timer expires, a replica

view change protocol. sends the IATETHEPRIMARY message to all replicas.

Solution The eventual consistency guarantee providedb"4'3 Impact on safety

by Zeno in a weak partition offers an opportunity to de- We argue that the safety of strong operations is not af-
sign a new view change protocol that is live. We in- fected by weak view changes. The reason is that a non-
troduce the following three changes in the view changdaulty replica never replaces its own CC with a con-
logic described earlier. flicting CC. Therefore, the correct replicas that partici-
pated in a commit operation ensure that the order of the
1. Like Zyzzyva, before sending thei&%vCHANGE = committed operation does not change across weak view
message, a replica requests a proof of its local C@&hanges.
and checkpoint message from other replicas. How- The argument of safety for weak operations directly
ever, unlike Zyzzyva, a replica starts a timer for follows the argumentin the PKI version. The weak oper-
d time after sending the request for the proof. A ations still require at leadt+ 1 matching replies. A non-
replica then sends the view change message if eitheiaulty replica does not maintain two concurrent histories,
it has _received the proof or if thé timer expired  therefore, at moshaxhist= Lfﬁ—‘j\/f‘fﬂ concurrent histo-
(e\{en if has_not. yet re_celved _the requested prO_OfS)ries in the presence df faulty replicas.
This relaxation is crucial for view change to be live

and is sufficient for eventual consistency semanticsA.4.4  Impact on liveness

as described below in Section A.4.3. Suppose a client is unable to complete its weak opera-

tions. If the primary is faulty and is introducing con-

view change messages to construct tHew\/ IEw flicts, the confhct detection procedure des.crlbed in S_ec-
on A.3.1 will eventually detect the conflict and initi-

message. (This is based on the observation thall : : ) .
view change messages sent by non-faulty replica@te a view change. If the primary is dropping requests

do not conflict.) Hence, eventually, a new primary or is silent, traditional mechanisms will initiate a view
will be able to send a KWV IEW méssage Note Cchange. Now we argue that the weak view change proto-

that there may not be a proof of the highest CC and®°! 1S live. o
checkpoint message in theeM\/ IEw message. Assume an eventually synchronous weak partition and

that a non-faulty replica becomes the primary for the
3. A replica who possesses a CC that is conflictingnext view. Each of the non-faulty replicas will either re-
with the CC picked in the new weak view does not ceive the proof of their CC and checkpoint or timeout
participate in the weak view and continues to sendand sends the MwWCHANGE message to the primary.
view change messages for the next view. This en-Therefore, the new primary will be able to receive at least
sures that committed operations are not lost acros$ + 1 view change messages that do not conflict with
view changes. each other and sends th&eWVIEwW message. (Recall
that the view change message sent by non-faulty replicas
Dealing with strong operations in a weak partition  do not conflict with each other.)
In a weak partition, strong operations can not be com- Assume an eventually synchronous weak partition and
pleted. A client will therefore keep retransmitting the that a faulty replica becomes the primary and sends a
strong operation. In a traditional BFT protocol, such NEwVIEwW message that conflicts with the highest CC

2. The new primary selects thfe+ 1 non-conflicting



of a correct replica. That correct replica will not partic- change protocol. Once a non-faulty replica is elected as
ipate in the new view. If the view is live, i.e., the faulty the primary, the commits will succeed and weak opera-
primary assigns consistent ordering to weak operationgjons will appear in the committed history.
the weak operations will be completed. (Although, it is
possible that the highest CC is not incorporated in this
view.) Otherwise, more view changes will be triggered
and eventually a non-faulty replica will be elected as the
primary.

We now argue that, in an eventually synchronous weak
partition, retransmissions of strong operations by carrec
clients can not cause continuous view changes if none
of the replicas are faulty. (Recall that a faulty replica
can cause continuous view changes in a weak patrtition,
as noted above, but progress is made in-between view
changes.) If none of the replicas are faulty, the conflict
detection at the commit time (e.g., for checkpoint inter-
val) will find thatD = 0. This in turn ensures that none
of the replicas initiates a view change and the retransmis-
sion of the strong operation is neglected.

Finally, we argue that while a faulty replica in a weak
partition can trigger continuous view changes, Zeno
makes progress in between such view changes. The ar-
gument is similar to Section A.3.3.

A5 Merge

Here, we describe how replicas merge operations that
they have weakly completed but not yet committed, for
example the operations that were completed in a weak
partition. Each non-faulty replica maintains a buffer,
tentative  _req, of client requests that it correctly
verified but that have not yet committed. Whenever a
replica moves to a higher view, either by participating
in a view change protocol or via obtaining &NV IEW
message, it sends the requeststémtative  _req
buffer to all replicas. Once a request is committed or
dropped (when a proof of its unauthenticability is ob-
tained, see Section A.1), the replica removes the request
from thetentative  _req buffer.

Liveness of weak operations Now we argue that Zeno
preserves the liveness of weak operation®'). Re-

call that for eventual consistency, each weakly com-
plete operation from a non-faulty client must get com-
mitted eventually. The merge procedure described above
ensures that every weakly completed operation is for-
warded to all correctreplicas. Since the requestis sent by
a correct client, it has a correct authenticator, and there-
fore it will be correctly verified at other non-faulty repli-
cas. Replicas will wait for a timeout and then forward
the request to the current primary if the request is not al-
ready ordered. The checkpoint protocol is periodically
initiated, ensuring that operations are committed. If the
current primary is faulty, it will be replaced eventually by

a correct primary as per the conflict detection and view



