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Abstract

Many distributed services are hosted at large, shared, geograph-
ically diverse data centers, and they use replication to achieve
high availability despite the unreachability of an entire data
center. Recent events show that non-crash faults occur in these
services and may lead to long outages. While Byzantine-Fault
Tolerance (BFT) could be used to withstand these faults, cur-
rent BFT protocols can become unavailable if a small frac-
tion of their replicas are unreachable. This is because exist-
ing BFT protocols favor strong safety guarantees (consistency)
over liveness (availability).

This paper presents a novel BFT state machine replication
protocol called Zeno that trades consistency for higher avail-
ability. In particular, Zeno replaces strong consistency (lin-
earizability) with a weaker guarantee (eventual consistency):
clients can temporarily miss each other’s updates but when the
network is stable the states from the individual partitionsare
merged by having the replicas agree on a total order for all re-
quests. We have built a prototype of Zeno and our evaluation
using micro-benchmarks shows that Zeno provides better avail-
ability than traditional BFT protocols.

1 Introduction

Data centers are becoming a crucial computing platform
for large-scale Internet services and applications in a va-
riety of fields. These applications are often designed as
a composition of multiple services. For instance, Ama-
zon’s S3 storage service and its e-commerce platform use
Dynamo [16] as a storage substrate, or Google’s indices
are built using the MapReduce [15] parallel processing
framework, which in turn can use GFS [19] for storage.

Ensuring correct and continuous operation of these
services is critical, since downtime can lead to loss of
revenue, bad press, and customer anger [5]. Thus, to
achieve high availability, these services replicate data
and computation, commonly at multiple sites, to be able
to withstand events that make an entire data center un-
reachable [16] such as network partitions, maintenance
events, and physical disasters.

When designing replication protocols, assumptions
have to be made about the types of faults the protocol
is designed to tolerate. The main choice lies between a
crash-faultmodel, where it is assumed nodes fail cleanly
by becoming completely inoperable, or aByzantine-fault

model, where no assumptions are made about faulty
components, capturing scenarios such as bugs that cause
incorrect behavior or even malicious attacks. A crash-
fault model is typically assumed in most widely deployed
services today, including those described above; the pri-
mary motivation for this design choice is that all ma-
chines of such commercial services run in the trusted en-
vironment of the service provider’s data center [16].

Unfortunately, the crash-fault assumption is not al-
ways valid even in trusted environments, and the con-
sequences can be disastrous. To give a few recent exam-
ples, Amazon’s S3 storage service suffered a multi-hour
outage, caused by corruption in the internal state of a
server that spread throughout the entire system [2]; also
an outage in Google’s App Engine was triggered by a bug
in datastore servers that caused some requests to return
errors [20]; and a multi-day outage at the Netflix DVD
mail-rental was caused by a faulty hardware component
that triggered a database corruption event [31].

Byzantine-fault-tolerant (BFT) replication protocols
are an attractive solution for dealing with such faults. Re-
cent research advances in this area have shown that BFT
protocols can perform well in terms of throughput and la-
tency [24], they can use a small number of replicas equal
to their crash-fault counterparts [10,39], and they can be
used to replicate off-the-shelf, non-deterministic, or even
distinct implementations of common services [32,38].

However, most proposals for BFT protocols have fo-
cused on strong semantics such as linearizability [23],
where intuitively the replicated system appears to the
clients as a single, correct, sequential server. The price to
pay for such strong semantics is that each operation must
contact a large subset (more than2

3, or in some cases45)
of the replicas to conclude, which can cause the system to
halt if more than a small fraction (1

3 or 1
5, respectively) of

the replicas are unreachable due to maintenance events,
network partitions, or other non-Byzantine faults. This
contrasts with the philosophy of systems deployed in cor-
porate data centers [16, 22, 36], which favor availability
and performance, possibly sacrificing the semantics of
the system, so they can provide continuous service and
meet tight SLAs [16].

In this paper we propose Zeno, a new BFT replication
protocol designed to meet the needs of modern services



running in corporate data centers. In particular, Zeno fa-
vors service performance and availability, at the cost of
providing weaker consistency guarantees than traditional
BFT replication when network partitions and other infre-
quent events reduce the availability of individual servers.

Zeno offers eventual consistency semantics [18],
which intuitively means that different clients can be un-
aware of the effects of each other’s operations, e.g., dur-
ing a network partition, but operations are never lost
and will eventually appear in a linear history of the
service—corresponding to that abstraction of a single,
correct, sequential server—once enough connectivity is
re-established.

In building Zeno we did not start from scratch, but in-
stead adapted Zyzzyva [24], a state-of-the-art BFT repli-
cation protocol, to provide high availability. Zyzzyva
employs speculation to conclude operations fast and
cheaply, yielding high service throughput during favor-
able system conditions—while connectivity and repli-
cas are available—so it is a good candidate to adapt
for our purposes. Adaptation was challenging for sev-
eral reasons, such as dealing with the conflict between
the client’s need for a fast and meaningful response and
the requirement that each request is brought to comple-
tion, or adapting theview changeprotocols to also enable
progress when only a small fraction of the replicas are
reachable and to merge the state of individual partitions
when enough connectivity is re-established.

The rest of the paper is organized as follows. Section 2
motivates the need for eventual consistency. Section 3
defines the properties guaranteed by our protocol. Sec-
tion 4 describe how Zeno works and Section 5 sketches
the proof of its correctness. Section 6 evaluates how our
implementation of Zeno performs. Section 7 presents re-
lated work, Section 8 concludes, and efficient symmetric
cryptography based Zeno is presented in Appendix A.

2 The Case for Eventual Consistency

Various levels and definitions of weak consistency have
been proposed by different communities [17], so we need
to justify why our particular choice is adequate. We
argue that eventual consistency is bothnecessaryfor
the guarantees we are targetting, andsufficientfrom the
standpoint of many applications.

Consider a scenario where a network partition occurs,
that causes half of the replicas from a given replica group
to be on one side of the partition and the other half on the
other side. This is plausible given that replicated sys-
tems often spread their replicas over multiple data cen-
ters for increased reliability [16], and that Internet parti-
tions do occur in practice [6]. In this case, eventual con-
sistency isnecessaryto offer high availability to clients
on both sides of the partition, since it is impossible to

have both sides of the partitions make progress and si-
multaneously achieve a consistency level that provided
a total order on the operations (“seen” by all client re-
quests) [7]. Intuitively, the closest approximation from
that idealized consistency that could be offered is even-
tual consistency, where clients on each side of the parti-
tion agree on an ordering (that only orders their opera-
tions with respect to each other), and, when enough con-
nectivity is re-established, the two divergent states can
be merged, meaning that a total order between the oper-
ations on both sides can be established, and subsequent
operations will reflect that order.

Additionally, we argue that eventual consistency is
sufficientfrom the standpoint of the properties required
by many services and applications that run in data cen-
ters. This has been clearly stated by the designers of
many of these services [3, 14, 16, 22, 36]. Applications
that use an eventually consistent service have to be able
to work with responses that may not include some previ-
ously executed operations. To give an example of appli-
cations that use Dynamo, this means that customers may
not get the most up-to-date sales ranks, or may even see
some items they deleted reappear in their shoping carts,
in which case the delete operation may have to be redone.
However, those events are much preferrable to having a
slow, or unavailable service.

Beyond data-center applications, many other exam-
ples of eventually consistent services has been deployed
in common-use systems, for example, DNS. Saito and
Shapiro [33] provide a more thourough survey of the
theme.

3 Algorithm Properties

We now informally specify safety and liveness properties
of a generic eventually consistent BFT service.

To specify safety in a formal way, we use the language
of I/O automata [29, chapter 8]. Our definitions extend
the correctness criteria of alinearizableByzantine-fault
tolerant service [8], and a definition of a crash fault-
tolerant eventually consistent service [18].

Figures 1 and 2 describe an I/O automaton correspond-
ing to a generic eventually consistent service. We will
use as a running example a shopping cart service with
operations such asAddItem, RemoveItem, CheckOut, etc.
The service is characterized by a set ofstatesQ (all pos-
sible sets of items in a shopping cart), an initial state
q0 ∈Q (an empty cart), a set ofclientsC, a set ofservers
Π, a set of operationsO (AddItem, RemoveItem, etc.), a
set of responsesO′ (the result of an item addition or dele-
tion) and a transition functiong : C ×O×Q→O′×Q.
This transition function models the sequential behavior
of the state machine being replicated, for example, when
a client invokes anAddItemoperation for itemx on an



Signature:

Inputs: Internals:
REQUEST(o,s)c ENTER(o,s,t,c)
CLIENT-FAILUREc MERGE
SERVER-FAILUREi EXECUTE(o,s,t,c)

FORK
Outputs: FAULTY-REQUEST(o,s,t,c)
REPLY-WEAK(r)c COMMIT
REPLY-STRONG(r)c (Here,o∈O, c∈ C, t ∈ N, i ∈ Π, r ∈O′.)

State components:

invoked⊆O×{0,1}×N×C, initially empty
H , a set ofhistories, initially {ε}, ε being the empty history
out,out-commit⊆O′×N×C, initially empty
∀c∈ C, last-reqc ∈ N, initially 0
∀c∈ C, faulty-clientc ∈ Bool, initially false
∀i ∈ Π, faulty-serveri ∈ Bool, initially false
failed≡ |{i|faulty-serveri = true}|
maxhist≡ ⌊(n−|failed|)/( f +1−|failed|)⌋

Figure 1: Specification of an eventually consistent ser-
vice: signature and state components.

empty shopping cart, the state changed to contain item
x. We assume that at mostf < N = |Π| servers and any
number of clients can be Byzantine faulty.

We model the global state of the eventually consistent
service as a set,invoked, of operations, where each oper-
ation is equipped with a boolean flag, declaring whether
the operation requires only a strong response (we call
such a requeststrong), a timestamp (a non-negative inte-
ger), and a client identifier (invoked⊆O×{0,1}×N×
C), a (multi)set,H, of histories, i.e., totally ordered sub-
sets ofinvoked. The histories describe all possible con-
current views of the service state the non-faulty servers
may have. This captures the intuitive notion that some
operations may have executed without being aware of
each other, e.g., on different sides of a network partition,
and are therefore only ordered with respect to a subset of
the requests that were executed. The service maintains
an invariant that the total number of divergent histories
never exceedsmaxhist= ⌊ n−|failed|

f+1−|failed|⌋, where|failed| is
the current number of failed servers. Intuitively, with
|failed| servers, there can be no more thanmaxhistgroups
of f + 1 servers, disjoint on the set of correct servers.
Each of these groups may therefore maintain an inde-
pendent history of clients’ requests.

A sequence of operations that are already committed
are modelled as a mapcommitted, defined onH, that
maps each historyh∈ H to a prefix ofh. For each two
historiesh andh′, committed(h) andcommitted(h′) are
related by containment, hence the order of every oper-
ation in committeddoes not change with time. For ex-
ample, after aCheckOutoperation on a shopping cart
becomes committed, its position in the committed his-
tory becomes locked, and subsequentCheckOutopera-
tions that commit see the effects of the previousCheck-
Out.

Transitions:

CLIENT-FAILUREc SERVER-FAILUREi

Eff: faulty-clientc := true Pre: |failed| < f
Eff: faulty-serveri := true

REQUEST(o,s)c
Eff: last-reqc := last-reqc +1

invoked:= invoked∪{(o,s, last-reqc,c)}

ENTER(o,s,t,c)
Pre:(o,s,t,c) ∈ invoked∧∃h∈ H : (o,s,t,c) /∈ h
Eff: h := selecth∈ H : (o,s,t,c) /∈ h

add(o,s,t,c) to the end ofh

MERGE
Pre: |H | ≥ 2
Eff: select{h,h′} ⊆ H

h′′ := mergeh andh′

committed(h′′) := max(committed(h),committed(h′))
H := H −{h,h′}+{h′′}

FORK
Pre: |H |< maxhist
Eff: selecth∈ H

H := H +{h}

COMMIT
Eff: selecth∈ H with the longest committed prefix

committed(h) := h

EXECUTE(o,s,t,c)
Pre:∃h∈ H : (o,s,t,c) ∈ h
Eff: selecth∈ H : (o,s,t,c) ∈ h
r := response of(o,s,t,c) in h

if (o,s,t,c) ∈ committed(h) thenout-commit:= out-commit∪{(r,t,c)}
else ifnot sthenout := out∪{(r,t,c)}

REPLY-WEAK(r)c REPLY-STRONG(r)c
Pre: faulty-clientc∨ Pre: faulty-clientc∨

∃t : (r,t,c) ∈ out ∃t : (r,t,c) ∈ out-commit
Eff: out := out−{(r,t,c)} Eff: out-commit:= out-commit−{(r,t,c)}

FAULTY-REQUEST(o,s,t,c)c
Pre: faulty-clientc = true
Eff: in := in∪{(o,s,t,c)}

Figure 2: Specification of an eventually consistent ser-
vice: transitions.

Faults of clients and replicas are modeled as input
actionsCLIENT-FAILUREc andSERVER-FAILUREi ,
respectively.

To describe the transitions, we follow the flow of a
client request. A requesto generated by a correct clientc
is modelled as an input actionREQUEST(o)c that com-
putes the timestampt of the current request ofc and adds
an element(o,s,t,c) to the set of invocationsinvoked. In-
ternal actionENTER(o,s,t,c) adds the request(o,s,t,c)
to the end of one of the histories inH, if the request was
not already there.

Action MERGE creates a new history from two histo-
ries inH, which adopts the longest committed prefix of
the two histories. ActionFORK split a given history into
two, under the condition that the total number of histories
in H does not exceedmaxhist. Intuitively, these two ac-
tions describe the evolution of views that correct servers
may have in case of creation and merging of partitions.

At any time, one of the histories with the longest com-
mitted prefix can commit all its requests (actionCOM-
MIT).



A request(o,s, t,c) can be executed based on its po-
sition in a historyh and the corresponding response is
put in one of the output buffersout andout-commit(ac-
tion EXECUTE).1 If (o,s, t,c) is in committed(h), then
a strong reply is put inout-commit. Otherwise, if the
corresponding request was not declared strong, a weak
reply is put inout. In our running example, anAddItem
request for itemx on an empty cart that is concurrent
with anotherAddItemrequest for itemy may receive a
response in which only itemx appears in the cart (for the
case whereAddItem(x) is eventually ordered beforeAd-
dItem(y), or a response in which bothx andy are in the
cart (if AddItem(y) is ordered first).

Output actions REPLY-WEAK(r)c and REPLY-
STRONG(r)c are enabled when, for somet, (r,t,c) ∈
outor (r,t,c) ∈ out-commit, respectively. WhenREPLY-
WEAK(r)c is issued, we say that clientc receives a
weak response, and the corresponding request(o,s,t,c)
is weakly complete. WhenREPLY-STRONG(r)c is is-
sued, we say that clientc receives astrong response, and
(o,s,t,c) is strongly completeor committed.

The strong responses correspond to committed opera-
tions that are totally ordered, unlike the weak responses
whose position in the total order is still undefined. In our
example, adding an element might only wait for a weak
response, but checking out could wait for a strong re-
sponse, to ensure other checkout operations see that cer-
tain items were already checked out.

A system ensureseventual consistencyif every trace
it produces—that is, every sequence of input and output
actions it exhibits as it evolves over time—belongs to the
set of traces of the automaton in Figures 1 and 2.

3.1 Liveness
On the liveness side, our service guarantees that a request
issued by a correct client is processed and a response is
returned to the client, provided that the client can com-
municate withenoughreplicas in a timely manner.

More precisely, we assume a default round-trip delay
∆ and we say that a set of serversΠ′ ⊆ Π, is eventually
synchronousif there is a time after which every two-way
message exchange withinΠ′ takes at most∆ time units.
We also assume that every two correct servers or clients
can eventually reliably communicate. Now our progress
requirements can be put as follows:

(L1) If there exists an eventually synchronous set off +1
correct serversΠ′, then every weak request issued
by a correct client is eventually weakly complete.

(L2) If there exists an eventually synchronous set of 2f +
1 correct serversΠ′, then every weakly complete

1We consider here deterministic services and, thus, a total order on
a set of operations unambiguously determines the state of the service
and the responses to all operations.

request or a strong request issued by a correct client
is eventually committed.

In particular, (L1) and (L2) imply that if there is a
an eventually synchronous set of 2f +1 correct replicas,
theneach(weak or strong) request issued by a correct
client will eventually be committed.

As we will explain later, ensuring(L1) in the pres-
ence of partitions may require unbounded storage. We
will present a protocol addition that bounds the storage
requirements at the expense of relaxing(L1).

4 Zeno Protocol

4.1 System model
Zeno is a BFT state machine replication protocol. It
requiresN = (3 f + 1) replicas to toleratef Byzantine
faults, i.e., we make no assumption about the behavior
of faulty replicas. Zeno also tolerates an arbitrary num-
ber of Byzantine clients. We assume no node can break
cryptographic techniques like collision-resistant digests,
encryption, and signing. The protocol we present in this
paper uses public key digital signatures to authenticate
communication. We present a modified version of the
protocol that uses more efficient symmetric cryptogra-
phy based on message authentication codes (MACs) in
the Appendix A.

The protocol uses two kinds of quorums:strong quo-
rumsconsisting of any group of 2f +1 distinct replicas,
andweak quorumsof f +1 distinct replicas.

The system easily generalizes to anyN ≥ 3 f + 1,
in which case the size ofstrong quorumsbecomes
⌈N+ f+1

2 ⌉, and weak quorums remain the same, indepen-
dent of N. Note that one can apply our techniques in
very large replica groups (whereN ≫ 3 f + 1) and still
make progress as long asf + 1 replicas are available,
whereas traditional (strongly consistent) BFT systems
can be blocked unless at least⌈N+ f+1

2 ⌉ replicas, grow-
ing with N, are available.

4.2 Overview
Like most traditional BFT state machine replication pro-
tocols, Zeno has three components:sequence number as-
signment(Section 4.4) to determine the total order of op-
erations,view changes(Section 4.5) to deal with leader
replica election, andcheckpointing(Section 4.8) to deal
with garbage collection of protocol and application state.

The execution goes through a sequence of configu-
rations calledviews. In each view, a designated leader
replica (theprimary) is responsible for assigning mono-
tonically increasing sequence numbers to clients’ opera-
tions. A replicaj is the primary for the view numberedv
iff j = v modN.



Name Meaning

v current view number
n highest sequence number executed
h history, a hash-chain digest of the requests
o operation to be performed
t timestamp assigned by the client to each request
s flag indicating if this is a strong operation
r result of the operation

D(.) cryptographic digest function
CC highest commit certificate
ND non-deterministic argument to an operation
OR Order Request message

Table 1: Notations used in message fields.

At a high level, normal case execution of a request
proceeds as follows. A client first sends its request to
all replicas. A designated primary replica assigns a se-
quence number to the client request and broadcasts this
proposal to the remaining replicas. Then all replicas ex-
ecute the request and return a reply to the client.

Once the client gathers sufficiently manymatching
replies—replies that agree on the operation result, the
sequence number, the view, and the replica history—it
returns this result to the application. For weak requests,
it suffices that a single correct replica returned the re-
sult, since that replica will not only provide a correct
weak reply by properly executing the request, but it will
also eventually commit that request to the linear history
of the service. Therefore, the client need only collect
matching replies from aweak quorumof replicas. For
strong requests, the client must wait for matching replies
from astrong quorum, that is, a group of at least 2f +1
distinct replicas. This implies that Zeno can complete
many weak operations in parallel across different parti-
tions when only weak quorums are available, whereas
it can complete strong operations only when there are
strong quorums available.

Whenever operations do not make progress, or if repli-
cas agree that the primary is faulty, a view change pro-
tocol tries to elect a new primary. Unlike in previous
BFT protocols, view changes in Zeno can proceed with
the concordancy of only a weak quorum. This can allow
multiple primaries to coexist in the system (e.g., during
a network partition) which is necessary to make progress
with eventual consistency. However, as soon as these
multiple views (with possibly divergent sets of opera-
tions) detect each other (Section 4.6), they reconcile their
operations via a merge procedure (Section 4.7), restoring
consistency among replicas.

In what follows, messages with a subscript of the form
σc denote a public-key signature by principalc. In all
protocol actions, malformed or improperly signed mes-
sages are dropped without further processing. We inter-
changeably use terms “non-faulty” and “correct” to mean
system components (e.g., replicas and clients) that follow

our protocol faithfully. Table 1 collects our notation.
We start by explaining the protocol state at the repli-

cas. Then we present details about the three protocol
components. We used Zyzzyva [24] as a starting point
for designing Zeno. Therefore, throughout the presenta-
tion, we will explain how Zeno differs from Zyzzyva.

4.3 Protocol State

Each replicai maintains the highest sequence number
n it has executed, the numberv of the view it is cur-
rently participating in, and an ordered history of requests
it has executed along with the ordering received from
the primary. Replicas maintain a hash-chain digesthn

of then operations in their history in the following way:
hn+1 = D(hn,D(REQn+1)), whereD is a cryptographic
digest function and REQn+1 is the request assigned se-
quence numbern+1.

A prefix of the ordered history upto sequence number
ℓ is calledcommittedwhen a replica gathers acommit
certificate(denotedCC and described in detail in Sec-
tion 4.4) forℓ; each replica only remembers the highest
CC it witnessed.

To prevent the history of requests from growing with-
out bounds, replicas assemble checkpoints after every
CHKP INTERVALsequence numbers. For every check-
point sequence numberℓ, a replica first obtains theCC
for ℓ and executes all operations upto and includingℓ. At
this point, a replica takes a snapshot of the application
state and stores it (Section 4.8).

Replicas remember the set of operations received from
each clientc in their request[c]buffer and only the last
reply sent to each client in theirreply[c] buffer. There-
questbuffer is flushed when a checkpoint is taken.

4.4 Sequence Number Assignment

To describe how sequence number assignment works, we
follow the flow of a request.

Client sends request. A correct clientcsends a request
〈REQUEST,o,t,c,s〉σc to all replicas, whereo is the op-
eration,t is a sequence number incremented on every re-
quest, ands is the strong operation flag.

Primary assigns sequence number and broadcasts or-
der request (OR) message. If the last operation ex-
ecuted for this client has timestampt ′ = t − 1, then
primary i assigns the next available sequence number
n+ 1 to this request, incrementsn, and then broadcasts
a 〈OR,v,n,hn,D(REQ), i,s,ND〉σi message to backup
replicas. ND is a set of non-deterministic application
variables, such as a seed for a pseudorandom num-
ber generator, used by the application to generate non-
determinism.



Replicas receive OR. When a replicaj receives an
OR message and the corresponding client request, it first
checks if both are authentic, and then checks if it is in
view v. If valid, it calculatesh′n+1 = D(hn,D(REQ)) and
checks ifh′n+1 is equal to the history digest in the OR
message. Next, it increments its highest sequence num-
bern, and executes the operationo from REQ on the ap-
plication state and obtains a replyr. A replica sends the
reply 〈〈SPECREPLY,v,n,hn,D(r),c, t〉σ j , j, r,OR〉 im-
mediately to the client ifs is false (i.e., this is a weak
request). Ifs is true, then the request must be com-
mitted before replying, so a replica first multicasts a
〈COMMIT ,OR, j〉σ j to all others. When a replica re-
ceives at least 2f + 1 such COMMIT messages (in-
cluding its own) matching inn, v, hn, D(REQ), it
forms a commit certificateCC consisting of the set of
COMMIT messages and the corresponding OR, stores
the CC, and sends the reply to the client in a message
〈〈REPLY,v,n,hn,D(r),c, t〉σ j , j, r,OR〉. The primary fol-
lows the same logic to execute the request, potentially
committing it, and sending the reply to the client. Note
that the commit protocol used for strong requests will
also add all the preceding weak requests to the set of
committed operations.

Client receives responses. For weak requests, if a
client receives a weak quorum of SPECREPLY messages
matching in theirv, n, h, r, and OR, it considers the re-
quest weakly complete and returns a weak result to the
application. For strong requests, a client requires match-
ing REPLY messages from a strong quorum to consider
the operation complete.

Fill Hole Protocol. Replicas only execute requests—
both weak and strong—in sequence number order. How-
ever, due to message loss or other network disrup-
tions, a replicai may receive an OR or a COMMIT

message with a higher-than-expected sequence num-
ber (that is, OR.n > n+ 1); the replica discards such
messages, asking the primary to “fill it in” on what
it has missed (the OR messages with sequence num-
bers betweenn+ 1 and OR.n) by sending the primary
a 〈FILL HOLE,v,n,OR.n, i〉 message. Upon receipt, the
primary resends all of the requested OR messages back
to i, to bring it up-to-date.

Comparison to Zyzzyva. There are four important
differences between Zeno and Zyzzyva in the normal ex-
ecution of the protocol.

First, Zeno clients only need matching replies from a
weak quorum, whereas Zyzzyva requires at least a strong
quorum; this leads to significant increase in availability,
when for example only betweenf +1 and 2f replicas are
available. It also allows for slightly lower overhead at the
client due to reduced message processing requirements,

and to a lower latency for request execution when inter-
node latencies are heterogeneous.

Second, Zeno requires clients to use sequential times-
tamps instead of monotonically increasing but not nec-
essarily sequential timestamps (which are the norm in
comparable systems). This is required for garbage col-
lection (Section 4.8). This raises the issue of how to deal
with clients that reboot or otherwise lose the informa-
tion about the latest sequence number. In our current im-
plementation we are not storing this sequence number
persistently before sending the request. We chose this
because the guarantees we obtain are still quite strong:
the requests that were already committed will remain in
the system, this does not interfere with requests from
other clients, and all that might happen is the client los-
ing some of its initial requests after rebooting or old-
est uncommitted requests. As future work, we will de-
vise protocols for improving these guarantees further, or
for storing sequence numbers efficiently using SSDs or
NVRAM.

Third, whereas Zyzzyva offers a single-phase perfor-
mance optimization, in which a request commits in only
three message steps under some conditions (when all
3 f +1 replicas operate roughly synchronously and are all
available and non-faulty), Zeno disables that optimiza-
tion. The rationale behind this removal is based on the
view change protocol (Section 4.5) so we defer the dis-
cussion until then. A positive side-effect of this removal
is that, unlike with Zyzzyva, Zeno does not entrust po-
tentially faulty clients with any protocol step other than
sending requests and collecting responses.

Finally, clients in Zeno send the request to all replicas
whereas clients in Zyzzyva send the request only to the
primary replica. This change is required only in the MAC
version of the protocol but we present it here to keep
the protocol description consistent. At a high level, this
change is required to ensure that a faulty primary can-
not prevent a correct request that has weakly completed
from committing—the faulty primary may manipulate a
few of the MACs in an authenticator present in the re-
quest before forwarding it to others, and during commit
phase, not enough correct replicas correctly verify the
authenticator and drop the request. Interestingly, we find
that the implementations of both PBFT and Zyzzyva pro-
tocols also require the clients to send the request directly
to all replicas.

Our protocol description omits some of the pedantic
details such as handling faulty clients or request retrans-
missions; these cases are handled similarly to Zyzzyva
and do not affect the overheads or benefits of Zeno when
compared to Zyzzyva.



4.5 View Changes

We now turn to the election of a new primary when the
current primary is unavailable or faulty. The key point
behind our view change protocol is that it must be able
to proceed when only a weak quorum of replicas is avail-
able unlike view change algorithms in strongly consistent
BFT systems which require availability of a strong quo-
rum to make progress. The reason for this is the follow-
ing: strongly consistent BFT systems rely on thequorum
intersection propertyto ensure that if a strong quorumQ
decides to change view and another strong quorumQ′ de-
cides to commit a request, there is at least one non-faulty
replica in both quorums ensuring that view changes do
not “lose” requests committed previously. This implies
that the sizes of strong quorums are at least 2f + 1, so
that the intersection of any two contains at leastf + 1
replicas, including—since no more thanf of those can
be faulty—at least one non-faulty replica. In contrast,
Zeno does not require view change quorums to intersect;
a weak request missing from a view change will be even-
tually committed when the correct replica executing it
manages to reach a strong quorum of correct replicas,
whereas strong requests missing from a view change will
cause a subsequent provable divergence and application-
state merge.

View Change Protocol. A client c retransmits the re-
quest to all replicas if it times out before completing its
request. A replicai receiving a client retransmission first
checks if the request is already executed; if so, it simply
resends the SPECREPLY/REPLY to the client from itsre-
ply[c] buffer. Otherwise, the replica forwards the request
to the primary and starts a IHateThePrimary timer.

In the latter case, if the replica does not receive
an OR message before it times out, it broadcasts
〈IHATETHEPRIMARY ,v〉σi to all replicas, but contin-
ues to participate in the current view. If a replica
receives such accusations from a weak quorum, it
stops participating in the current viewv and sends a
〈V IEWCHANGE,v+1,CC,O〉σi to other replicas, where
CC is the highest commit certificate, andO is i’s or-
dered request history since that commit certificate, i.e.,
all OR messages for requests with sequence numbers
higher than the one inCC. It then starts the view change
timer.

The primary replicaj for view v+1 starts a timer with
a shorter timeout value called the aggregation timer and
waits until it collects a set of VIEWCHANGE messages
for view v+ 1 from astrongquorum, or until its aggre-
gation timer expires. If the aggregation timer expires and
the primary replica has collectedf +1 or more such mes-
sages, it sends a〈NEWV IEW,v+1,P〉σ j to other repli-
cas, whereP is the set of VIEWCHANGE messages it
gathered (we call this aweak view change, as opposed to

one where a strong quorum of replicas participate which
is called astrong view change). If a replica does not
receive the NEWV IEW message before the view change
timer expires, it starts a view change into the next view
number.

Note that waiting for messages from a strong quorum
is not needed to meet our eventual consistency specifi-
cation, but helps to avoid a situation where some opera-
tions are not immediately incorporated into the new view,
which would later create a divergence that would need to
be resolved using our merge procedure. Thus it improves
the availability of our protocol.

Each replica locally calculates the initial state for the
new view by executing the requests contained inP ,
thereby updating bothn and the history chain digesthn.
The order in which these requests are executed and how
the initial state for the new view is calculated is related
to how we merge divergent states from different replicas,
so we defer this explanation to Section 4.7. Each replica
then sends a〈V IEWCONFIRM,v+1,n,hn, i〉σi to all oth-
ers, and once it receives such VIEWCONFIRM messages
matching inv+1,n, andh from a weak or a strong quo-
rum (for weak or strong view changes, respectively) the
replica becomes active in viewv+1 and stops processing
messages for any prior views.

The view change protocol allows a set off + 1 cor-
rect but slow replicas to initiate a global view change
even if there is a set off +1 synchronized correct repli-
cas, which may affect our liveness guarantees (in par-
ticular, the ability to eventually execute weak requests
when there is a synchronous set off +1 correct servers).
We avoid this by prioritizing client requests over view
change requests as follows. Every replica maintains a
set of client requests that it received but have not been
processed (put in an ordered request) by the primary.
Whenever a replicai receives a message fromj re-
lated to the view change protocol (IHATETHEPRIMARY ,
V IEWCHANGE, NEWV IEW, or VIEWCONFIRM) for a
higher view,i first forwards the outstanding requests to
the current primary and waits until the corresponding
ORs are received or a timer expires. For each pending re-
quest, if a valid OR is received, then the replica sends the
corresponding response back to the client. Theni pro-
cesses the original view change related messages fromj
according to the protocol described above. This guaran-
tees that the system makes progress even in the presence
of continuous view changes caused by the slow replicas
in such pathological situations.

Comparison to Zyzzyva. View changes in Zeno differ
from Zyzzyva in the size of the quorum required for a
view change to succeed: we requiref + 1 view change
messages before a new view can be announced, whereas
previous protocols required 2f +1 messages. Moreover,



the way a new view message is processed is also dif-
ferent in Zeno. Specifically, the start state in a new
view must incorporate not only the highestCC in the
V IEWCHANGE messages, but also all ORDERREQ that
appear in any VIEWCHANGE message from the previ-
ous view. This guarantees that a request is incorporated
within the state of a new view even if only a single replica
reports it; in contrast, Zyzzyva and other similar proto-
cols require support from a weak quorum for every re-
quest moved forward through a view change. This is re-
quired in Zeno since it is possible that only one replica
supports an operation that was executed in a weak view
and no other non-faulty replica has seen that operation,
and because bringing such operations to a higher view is
needed to ensure that weak requests are eventually com-
mitted.

The following sections describe additions to the view
change protocols to incorporate functionality for detect-
ing and merging concurrent histories, which are also ex-
clusive to Zeno.

4.6 Detecting Concurrent Histories

Concurrent histories (i.e., divergence in the service state)
can be formed for several reasons. This can occur when
the view change logic leads to the presence of two repli-
cas that simultaneously believe they are the primary, and
there are a sufficient number of other replicas that also
share that belief and complete weak operations proposed
by each primary. This could be the case during a network
partition that splits the set of replicas into two subsets,
each of them containing at leastf +1 replicas.

Another possible reason for concurrent histories is that
the base history decided during a view change may not
have the latest committed operations from prior views.
This is because a view change quorum (a weak quorum)
may not share a non-faulty replica with prior commit-
ment quorums (strong quorums) and remaining replicas;
as a result, some committed operations may not appear in
V IEWCHANGE messages and, therefore, may be missing
from the new starting state in the NEWV IEW message.

Finally, a misbehaving primary can also cause diver-
gence by proposing the same sequence numbers to dif-
ferent operations, and forwarding the different choices
to disjoint sets of replicas.

Basic Idea. Two request history orderingshi
1,h

i
2, . . .

and h j
1,h

j
2, . . ., present at replicasi and j respectively,

are calledconcurrent if there exists a sequence num-
ber n such thathi

n 6= h j
n; because of the collision resis-

tance of the hash chaining mechanism used to produce
history digests, this means that the sequence of requests
represented by the two digests differ as well. A replica
compares history digests whenever it receives protocol

messages such as OR, COMMIT , or CHECKPOINT (de-
scribed in Section 4.8) that purport to share the same his-
tory as its own.

For clarity, we first describe how we detect divergence
within a view and then discuss detection across views.
We also defer details pertaining to garbage collection of
replica state until Section 4.8.

4.6.1 Divergence between replicas in same view

Suppose replicai is in view vi , has executed up to
sequence numberni , and receives a properly authen-
ticated message〈OR,vi ,n j ,hn j ,D(REQ), p,s,ND〉σp

or 〈COMMIT ,〈OR,vi ,n j ,hn j ,D(REQ), p,s,ND〉σp, j〉σ j

from replica j.
If ni < n j , i.e., j has executed a request with

sequence numbern j , then the fill-hole mecha-
nism is started, andi receives from j a message
〈OR,v′,ni ,hni ,D(REQ′),k,s,ND〉σk, wherev′ ≤ vi and
k = primary(v′).

Otherwise, ifni ≥ n j , both replicas have executed a
request with sequence numbern j and thereforei must
have the some〈OR,v′,n j ,hn j ,D(REQ′),k,s,ND〉σk mes-
sage in its log, wherev′ ≤ vi andk = primary(v′).

If the two history digests match (the localhn j or hni ,
depending on whetherni ≥ n j , and the one received in
the message), then the two histories are consistent and
no concurrency is deduced.

If instead the two history digests differ, the histories
must differ as well. If the two OR messages are authen-
ticated by the same primary, together they constitute a
proof of misbehavior (POM); through an inductive argu-
ment it can be shown that the primary must have assigned
different requests to the same sequence numbern j . Such
a POM is sufficient to initiate a view change and a merge
of histories (Section 4.7).

The case when the two OR messages are authenticated
by different primaries indicates the existence of diver-
gence, caused for instance by a network partition, and
we discuss how to handle it next.

4.6.2 Divergence across views

Now assume that replicai receives a message from
replica j indicating thatv j > vi . This could happen due to
a partition, during which different subsets changed views
independently, or due to other network and replica asyn-
chrony. Replicai requests the NEWV IEW message for
v j from j. (The case wherev j < vi is similar, with the
exception thati pushes the NEWV IEW message toj in-
stead.)

When node i receives and verifies the
〈NEWV IEW,v j ,P〉σp message, wherep is the issu-
ing primary of viewv j , it compares its local history to
the sequence of OR messages obtained after ordering
the OR message present in the NEWV IEW message



(according to the procedure described in Section 4.7).
Let nl and nh be the lowest and highest sequence
numbers of those OR messages, respectively.

Case 1: [ni < nl ] Replicai is missing future requests,
so it sendsj a FILL HOLE message requesting the OR
messages betweenni andnl . When these are received, it
compares the OR message forni to detect if there was di-
vergence. If so, the replica obtained aproof of divergence
(POD), consisting of the two OR messages, which it can
use to initiate a new view change. If not, it executes the
operations fromni to nl and ensures that its history af-
ter executingnl is consistent with theCC present in the
NEWV IEW message, and then handles the NEWV IEW

message normally and entersv j . If the histories do not
match this also constitutes a POD.

Case 2: [nl ≤ ni ≤ nh] Replica i must have the cor-
responding ORDERREQ for all requests with sequence
numbers betweennl and ni and can therefore check if
its history diverges from that which was used to gener-
ate the new view. If it finds no divergence, it moves to
v j and calculates the start state based on the NEWV IEW

message (Section 4.5). Otherwise, it generates aPOD
and initiates a merge.

Case 3: [ni > nh] Replica i has corresponding OR
messages for all sequence numbers appearing in the
NEWV IEW and can check for divergence. If no diver-
gence is found, the replica has executed more requests in
a lower viewvi thanv j . Therefore, it generates aProof
of Absence (POA), consisting of all OR messages with
sequence numbers in[nl ,ni ] and the NEWV IEW message
for the higher view, and initiates a merge. If divergence
is found,i generates aPODand also initiates a merge.

Like traditional view change protocols, a replicai does
not enterv j if the NEWV IEW message for that view did
not include all ofi’s committed requests. This is im-
portant for the safety properties providing guarantees for
strong operations, since it excludes a situation where re-
quests could be committed inv j without seeing previ-
ously committed requests.

4.7 Merging Concurrent Histories
Once concurrent histories are detected, we need to merge
them in a deterministic order. The solution we propose
is to extend the view change protocol, since many of the
functionalities required for merging are similar to those
required to transfer a set of operations across views.

We extend the view change mechanism so that view
changes can be triggered by either PODs, POMs or
POAs. When a replica obtains a POM, a POD, or a POA
after detecting divergence, it multicasts a message of the
form 〈POMMSG,v,POM〉σi , 〈PODMSG,v,POD〉σi , or
〈POAMSG,v,POA〉σi in addition to the VIEWCHANGE

message forv. Note here thatv in POM and POD is
one higher than the highest view number present in the
conflicting ORDERREQ messages, or one higher than the
view number in the NEWV IEW component in the case of
a POA.

Upon receiving an authentic and valid POMMSG

or PODMSG or a POAMSG, a replica broadcasts a
V IEWCHANGE along with the triggering POM, POD, or
POA message.

The view change mechanism will eventually lead to
the election of a new primary that is supposed to multi-
cast a NEWV IEW message. When a node receives such
a message, it needs to compute the start state for the next
view based on the information contained in that message.
The new start state is calculated by first identifying the
highestCC present among all VIEWCHANGE messages;
this determines the new base history digesthn for the start
sequence numbern of the new view.

But nodes also need to determine how to order the dif-
ferent OR messages that are present in the NEWV IEW

message but not yet committed. Contained OR mes-
sages (potentially including concurrent requests) are or-
dered using a deterministic function of the requests that
produces a total order for these requests. Having a fixed
function allows all nodes receiving the NEWV IEW mes-
sage to easily agree on the final order for the concurrent
OR present in that message. Alternatively, we could let
the primary replica propose an ordering, and disseminate
it as an additional parameter of the NEWV IEW message.

Replicas receiving the NEWV IEW message then exe-
cute the requests in the OR messages according to that
fixed order, updating their histories and history digests.
If a replica has already executed some weak operations
in an order that differs from the new ordering, it first rolls
back the application state to the state of the last check-
point (Section 4.8) and executes all operations after the
checkpoint, starting with committed requests and then
with the weak requests ordered by the NEWV IEW mes-
sage. Finally, the replica broadcasts a VIEWCONFIRM

message. As mentioned, when a replica collects match-
ing VIEWCONFIRM messages onv, n, andhn it becomes
active in the new view.

Our merge procedure re-executes the concurrent op-
erations sequentially, without running any additional or
alternative application-specific conflict resolution proce-
dure. This makes the merge algorithm slightly simpler,
but requires the application upcall that executes client op-
erations to contain enough information to identify and re-
solve concurrent operations. This is similar to the design
choice made by Bayou [35] where special concurrency
detection and merge procedure are part of each service
operation, enabling servers to automatically detect and
resolve conflicts.



Limiting the number of merge operations. A faulty
replica can trigger multiple merges by producing a new
POD for each conflicting request in the same view, or
generating PODs for requests in old views where itself
or a colluding replica was the primary. To avoid this
potential performance problem, replicas remember the
last POD, POM, or a POA every other replica initiated,
and reject a POM/POD/POA from the same or a lower
view coming from that replica. This ensures that a faulty
replica can initiate a POD/POM/POA only once from
each view it participated in. This, as we show in Sec-
tion 5, helps establish our liveness properties.

Recap comparison to Zyzzyva. Zeno’s view changes
motivate our removal of the single-phase Zyzzyva op-
timization for the following reason: suppose a strong
client request REQ was executed (and committed) at se-
quence numbern at 3f +1 replicas. Now suppose there
was a weak view change, the new primary is faulty, and
only f +1 replicas are available. A faulty replica among
those has the option of reporting REQ in a different or-
der in its VIEWCHANGE message, which enables the
primary to order REQ arbitrarily in its NEWV IEW mes-
sage; this is possible because only a single—potentially
faulty—replica need report any request during a Zeno
view change. This means that linearizability is violated
for this strong, committed request REQ. Although it may
be possible to design a more involved view change to
preserve such orderings, we chose to keep things sim-
ple instead. As our results show, in many settings where
eventual consistency is sufficient for weak operations,
our availability under partitions tramps any benefits from
increased throughput due to the Zyzzyva’s optimized
single-phase request commitment.

4.8 Garbage Collection

The protocol we have presented so far has two important
shortcomings: the protocol state grows unboundedly, and
weak requests are never committed unless they are fol-
lowed by a strong request.

To address these issues, Zeno periodically takes
checkpoints, garbage collecting its logs of requests and
forcing weak requests to be committed.

When a replica receives an ORDERREQ message from
the primary for sequence numberM, it checks if M
mod CHKP INTERVAL = 0. If so, it broadcasts the
COMMIT message corresponding toM to other repli-
cas. Once a replica receives 2f + 1 COMMIT mes-
sages matching inv, M, and hM, it creates the com-
mit certificate for sequence numberM. It then sends
a 〈CHECKPOINT,v,M,hM,App〉σ j to all other replicas.
The App is a snapshot of the application state after ex-
ecuting requests upto and includingM. When it receives
f +1 matching CHECKPOINT messages, it considers the

checkpoint stable, stores this proof, and discards all or-
dered requests with sequence number lower thann along
with their corresponding client requests.

Also, in case the checkpoint procedure is not run
within the interval ofTCHKP time units, and a replica has
some not yet committed ordered requests, the replica also
initiates the commit step of the checkpoint procedure.
This is done to make sure that pending ordered requests
are committed when the service is rarely used by other
clients and the sequence numbers grow very slowly.

Our checkpoint procedure described so far poses a
challenge to the protocol for detecting concurrent his-
tories. Once old requests have been garbage-collected,
there is no way to verify, in the case of a slow replica (or
a malicious replica pretending to be slow) that presents
an old request, if that request has been committed at that
sequence number or if there is divergence.

To address this, clients send sequential timestamps to
uniquely identify each one of their own operations, and
we added a list of per-client timestamps to the checkpoint
messages, representing the maximum operation each
client has executed up to the checkpoint. This is in con-
trast with previous BFT replication protocols, including
Zyzzyva, where clients identified operations using times-
tamps obtained by reading their local clocks. Concretely,
a replica sends〈CHECKPOINT,v,M,hM ,App,CSet〉σ j ,
whereCSet is a vector of〈c,t〉 tuples, wheret is the
timestamp of the last committed operation fromc.

This allows us to detect concurrent requests, even if
some of the replicas have garbage-collected that request.
Suppose a replicai receives an OR with sequence num-
ber n that corresponds to clientc’s request with times-
tamp t1. Replica i first obtains the timestamp of the
last executed operation ofc in the highest checkpoint
tc=CSet[c]. If t1 ≤ tc, then there is no divergence since
the client request with timestampt1 has already been
committed. But ift1 > tc, then we need to check if some
other request was assignedn, providing a proof of diver-
gence. Ifn< M, then the CHECKPOINTand the OR form
a POD since some other request was assignedn. Else, we
can perform regular conflict detection procedure to iden-
tify concurrency (see Section 4.6).

Note that our checkpoints become stable only when
there are at least 2f +1 replicas that are able to agree. In
the presence of partitions or other unreachability situa-
tions where only weak quorums can talk to each other, it
may not be possible to gather a checkpoint, which im-
plies that Zeno must either allow the state concerning
tentative operations to grow without bounds, or weaken
its liveness guarantees. In our current protocol we chose
the latter, and so replicas stop participating once they
reach a maximum number of tentative operations they
can execute, which could be determined based on their
available storage resources (memory as well as the disk



space). Garbage collecting weak operations and the re-
sulting impact on conflict detection is left as a future
work.

5 Correctness

In this section, we sketch the proof that Zeno satisfies the
safety properties specified in Section 3.

In Zeno, a (weak or strong) response is based on iden-
tical histories of at leastf + 1 replicas, and, thus, at
least one of these histories belongs to a correct replica.
Hence, in the case that our garbage collection scheme
is not initiated, we can reformulate the safety require-
ments as follows:(S1) the local history maintained by
a correct replica consists of a prefix of committed re-
quests extended with a sequence of speculative requests,
where no request appears twice,(S2) a request associ-
ated with a correct clientc appears, in a history at a
correct replica only ifc has previously issued the re-
quest, and(S3) the committed prefixes of histories at
every two correct replicas are related by containment,
and(S4)at any time, the number of conflicting histories
maintained at correct replica does not exceedmaxhist=
⌊(N− f ′)/( f − f ′ + 1)⌋, where f ′ is the number of cur-
rently failed replicas andN is the total number of replicas
required to tolerate a maximum off faulty replicas. Here
we say that two histories are conflicting if none of them
is a prefix of the other.

Properties(S1)and(S2)are implied by the state main-
tenance mechanism of our protocol and the fact that only
properly signed requests are put in a history by a correct
replica. The special case when a prefix of a history is
hidden behind a checkpoint is discussed later.

A committed prefix of a history maintained at a correct
replica can only be modified by a commitment of a new
request or a merge operation. The sub-protocol of Zeno
responsible for committing requests are analogous to the
two-phase conservative commitment in Zyzzyva [24],
and, similarly, guarantees that all committed requests are
totally ordered. When two histories are merged at a cor-
rect replica, the resulting history adopts the longest com-
mitted prefix of the two histories. Thus, inductively, the
committed prefixes of all histories maintained at correct
replicas are related by containment(S3).

Now suppose that at a given time, the number of con-
flicting histories maintained at correct replica is more
than maxhist. Our weak quorum mechanism guaran-
tees that each history maintained at a correct process is
supported by at leastf + 1 distinct processes (through
sending SPECREPLY and REPLY messages). A correct
process cannot concurrently acknowledge two conflict-
ing histories. But whenf ′ replicas are faulty, there can
be at most⌊(n− f ′)/( f − f ′ + 1)⌋ sets of f + 1 replicas
that are disjoint in the set of correct ones. Thus, at least

one correct replica acknowledged two conflicting histo-
ries — a contradiction establishes(S4).
Checkpointing. Note that our garbage collection
scheme may affect property(S1): the sequence of tenta-
tive operations maintained at a correct replica may poten-
tially include a committed but already garbage-collected
operation. This, however, cannot happen: each round of
garbage collection produces a checkpoint that contains
the latest committed service state and the logical times-
tamp of the latest committed operation of every client.
Since no correct replica agrees to commit a request from
a client unless its previous requests are already commit-
ted, the checkpoint implies the set of timestamps of all
committed requests of each client. If a replica receives an
ordered request of a clientc corresponding to a sequence
number preceding the checkpoint state, and the times-
tamp of this request is no later than the last committed
request ofc, then the replica simply ignores the request,
concluding that the request is already committed. Hence,
no request can appear in a local history twice.

5.1 Liveness
To show that Zeno complies with the liveness properties,
we first establish that every weak request issued by a cor-
rect client is complete if a weak quorum of correct repli-
cas is eventually synchronous, and then we show how
the existence of a strong eventually synchronous quorum
implies that each weakly complete request or a strong re-
quest issued by a correct client is committed. We assume
that correct replicas and clients can eventually reliably
communicate.

5.1.1 Weak partitions

ConsiderΠ′, an eventually synchronous set off + 1
correct replicas and let clientc issue a weak request
(o,0,t,c). By contradiction, suppose that property(L1)
does not hold, i.e., the client’s request never completes.
By the client’s protocol,c keeps periodically rebroad-
casting the request until it receives at leastf +1 match-
ing responses from distinct replicas. Recall that correct
clients are well formed. Thus,c has earlier completed all
requests with timestampst ′ < t. Since every complete re-
quest involves at least one correct replica, we know that
at least one correct replica stored the corresponding or-
dered requests in its local history. Periodic exchanges of
SPECREPLY messages (e.g., during checkpoints) ensure
that all such ordered requests will eventually reach every
correct replica inΠ′.

Now consider timet0 after whichΠ′ becomes syn-
chronous, i.e., aftert0, round-trip delays between every
two correct replicas inΠ′ do not exceed∆.

View changes for non-responsive partitions. By the
replica’s protocol, each correct replica that receives the



request forwards it to the primary of its current view
and sets the timer. If the timer expires before the cor-
responding ordered request is received from the primary
(which can only happen aftert0 if the primary is faulty),
the replica initiates a view change protocol. If no correct
replica inΠ′ received the ordered request on time, then
at leastf +1 correct replicas inΠ′ will commit to a view
change. Otherwise, if at least one correct replica inΠ′

received the ordered request, then every correct replica
will receive the ordered request in the current view since
correct replicas can obtain the OR corresponding to a
request from other correct replicas. Thus, either every
correct replica inΠ′ will send a speculative response toc
(based on the history proposed by the primary), or every
correct replica inΠ′ will switch to the next view. In the
former case, sincec never completes its request,f + 1
speculative responses based on the ordered request from
the same view and received byc do not match, which
constitutes a POM (proof of misbehavior) against the pri-
mary and will be used as a basis for a view change.

Thus, as long asc does not complete its operation, the
partition goes through consequent view changes. Now
we need to show that the view changes do not indefi-
nitely prevent replicas inΠ′ from making progress. We
observe first that, since primaries are assigned to views
in a round-robin fashion, the correct replicas inΠ′ will
eventually reach a view whose primary is correct. But
what about faulty or stale replicas with conflicting histo-
ries? Can they cause a view change even when the cur-
rent primary is correct? In fact, the answer is yes, but we
show below that they can only cause a bounded number
of such view changes.

View changes for divergent histories. When a replica
i finds out that another replicaj is in a fresher viewv, i
adoptsv as its view and tries to reconcile the histories.
If, after adopting the most recent commit certificaten, i
realizes that the same sequence numbern′ > n is assigned
to two different (not yet committed) requests ati and j,
it can use this as anevidencefor a view change.

However, such evidence can be used at most once per
view: different requests assigned to the same sequence
number by the same primary (or different primary) ap-
pear as a POM, POA, or POD. Furthermore, once two
divergent histories fromi and j are used as evidence for
a view change in a given viewv (these divergent histories
are part of POM, POA, or or POD message), histories
of i and j in previous views are ignored. Thus, even-
tually, faulty and stale replicas will run out of pieces of
evidence and the correct replicas inΠ′ will reach a view
with a correct primary inΠ′. Since each correct replica
maintains a set of received but not yet processed clients’
requests that eventually include the request ofc, and al-
ways tries to process the requests before taking part in a

view change, the outstanding request ofc will reach the
primary in Π′, the primary will generate an ordered re-
quest that will be sustained by at leastf + 1 replicas in
a timely manner, and at leastf + 1 matching responses
will reach the client — a contradiction. Hence,(L1) is
ensured.

5.1.2 Strong and weakly complete requests

Finally, consider time after which a “strong” quorumΠ′

containing 2f +1 correct replicas becomes synchronous.
Assume, by contradiction, that some strong or weakly
complete request(o,s,t,c) never gets committed. First,
since a correct client keeps retransmitting a request until
it is complete, our protocol ensures that an ordered re-
quest containing(o,s,t,c) is eventually adopted by some
correct replica. Eventually, the ordered request will reach
every correct replica inΠ′, e.g., during checkpointing or
merge operations. As long as the set of ordered but not
yet committed requests is not empty, correct replicas will
periodically initiate the checkpointing sub-protocol in or-
der to commit these requests. As we showed above, all
correct replicas in the partition will eventually stabilize
at the same view with a correct primary. Thus, eventu-
ally, 2f + 1 correct replicas will succeed in committing
all outstanding ordered requests proposed by the primary
and these requests will include(o,t,c)—a contradiction.
Hence,(L2) is ensured.

6 Evaluation

We have implemented a prototype of Zeno as an exten-
sion to the publicly available Zyzzyva source code [26].

Our evaluation tries to answer the following questions:
(1) Does Zeno incur more overhead than existing proto-
cols in the normal case? (2) Does Zeno provide higher
availability compared to existing protocols when there
are more thanf unreachable nodes? (3) What is the cost
of merges?

Experimental setup. We set f = 1, and the minimum
number of replicas to tolerate it,N = 3 f +1= 4. We vary
the number of clients to increase load. Each physical ma-
chine has a dual-core 2.8 GHz AMD processor with 4GB
of memory, running a 2.6.20 Linux kernel. Each replica
as well as a client runs on a dedicated physical machine.
We use Modelnet [37] to simulate a network topology
consisting of two hubs connected via a bi-directional link
unless otherwise mentioned. Each hub has two servers in
all of our experiments but client location varies as per the
experiment. Each link has one-way latency of 1 ms and
a 100 Mbps bandwidth.

Transport protocols. Zyzzyva, like PBFT, uses multi-
cast to reduce the cost of sending operations from clients
to all replicas, so it uses UDP as a transport protocol and



implements a simple backoff and retry policy to handle
message loss. This is not optimized for periods of con-
gestion and high message loss, such as those we ante-
cipate during merges when the replicas that were parti-
tioned need to bring each other up-to-date. To address
this, Zeno uses TCP as the transport layer during the
merge procedure but continues to use Zyzzyva’s UDP-
based transport during normal operation and multicast-
ing communication that is sent to all replicas.

Partition. We simulate network partitions by separat-
ing the two hubs from each other. We vary the duration of
the partitions from 1 to 5 minutes, based on the observa-
tion by Chandra et al. [13] that a large fraction (> 75%)
of network disconnectivity events range from 30 to 500
seconds.

6.1 Implementation

Replacing PKI with MACs. Our Zeno prototype uses
MACs instead of the slower digital signatures to imple-
ment message authentication for the common-case, but
still uses signatures for view changes. Using MACs in-
duces some small mechanistic design changes over the
protocol description in Section 4; these changes are stan-
dard practice in similar protocols including Zyzzyva, and
are presented in Appendix A.

Merge. Replicas detect divergence by following the al-
gorithm specified in Section 4.7. We implemented an
optimization to the merge protocol where replicas first
move to the higher view and then propagate their local
uncommitted requests to the primary of the higher view.
The primary of the higher view orders these requests as if
they are received from the client and hence merges these
requests in the history.

6.2 Results

We generate a workload with a varying fraction of strong
and weak operations. If each client issued both strong
and weak operations, then most clients would block soon
after network partitions started. Instead, we simulate two
kind of clients: (i) weak clients only issue weak requests
and (ii) strong clients always pose strong requests. This
allows us to vary the ratio of weak operations (denoted
by α) in the total workload with a limited number of
clients in the system and long network partitions. We
use a micro-benchmark that executes a no-op when the
executeupcall for the client operation is invoked.

We have also built a simple application on top of Zeno,
emulating a shopping cart service with operations to add,
remove, and checkout items based on akey-valuedata
store. We also implement a simple conflict detection and
merge procedure.

Protocol Batch=1 Batch=10

Zyzzyva (single phase) 62 Kops/s 88 Kops/s
Zeno (weak) 60 Kops/s 86 Kops/s
Zeno (strong) 40 Kops/s 82 Kops/s

Zyzzyva (commit opt) 40 Kops/s 82 Kops/s

Table 2: Peak throughput of Zeno and Zyzzyva.

6.2.1 Maximum throughput in the normal case

We compare the normal case performance of Zeno with
Zyzzyva. In both systems we used the optimization of
batching requests to reduce protocol overhead. In this
experiment, the clients and servers are connected by a
1 Gbps switch with 0.1 ms round trip latency. We ex-
pect the peak throughput of Zeno with weak operations
to approximately match the peak throughput of Zyzzyva
since both can be completed in a single phase. However,
the performance of Zeno with strong operations will be
lower than the peak throughput of Zyzzyva since Zeno
requires an extra phase to commit a strong operation.

Our results presented in Table 2 show that Zeno
and Zyzzyva’s throughput are similar, with Zyzzyva
achieving slightly (3–6%) higher throughput than Zeno’s
throughput for weak operations. The results also show
that, with batching, Zeno’s throughput for strong op-
erations is also close to Zyzzyva’s peak throughput:
Zyzzyva has 7% higher throughput when the single
phase optimization is employed. However, when a single
replica is faulty or slow, Zyzzyva cannot achieve the sin-
gle phase throughput and Zeno’s throughput for strong
operations is identical to Zyzzyva’s performance with a
faulty replica.

6.2.2 Partition with no concurrency

For all the remaining experiments, we use Modelnet
setup and disable multicast since Modelnet does not sup-
port it. We use a client population of 4 nodes, each send-
ing a new request of minimal payload (2 Bytes) as soon
as it has completed the previous request. This generates
a steady load of approximately 500 requests/sec on the
system. This is similar to an example SLA provided in
Dynamo [16]. We use a batch size of 1 for both Zyzzyva
and Zeno, since it is sufficient to handle the incoming
request load.

In this experiment, all clients reside in the first LAN.
We initiate a partition at 90 seconds which continues for
a minute. Since there are no clients in the second LAN,
there are no requests processed in it and hence there is no
concurrency, which avoids the cost of merging. Replicas
with id 0 (primary for view initial view 0) and 1 reside
in the first LAN while replicas with ids 2 and 3 reside in
the second LAN. We also present the results of Zyzzyva
to compare the performance in both normal cases as well
as under the given failure.
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Figure 3: Two replicas are disconnected via a partition,
that starts at time 90 and continues for 60 seconds. Pa-
rameterα represents the fraction of weak operations in
the workload. Note that the throughput of weak and
strong operations in Zeno is presented separately for clar-
ity.

Varying α. We vary the mix of weak and strong opera-
tions in the workload, and present the results in Figure 3.
First, strong operations block as soon as the failure starts
which is expected since not enough replicas are reach-
able from the first LAN to complete the strong opera-
tion. However, as soon as the partition heals, we observe
that strong operations start to be completed. Note also
that Zyzzyva also blocks as soon as the failure starts and
resumes as soon as it ends.

Second, weak operations continue to be processed and
completed during the partition and this is because Zeno
requires (forf = 1) only 2 non-faulty replicas to com-
plete the operation. The fraction of total requests com-
pleted increases asα increases, essentially improving the
availability of such operations despite network partitions.

Third, when replicas in the other LAN are reachable
again, they need to obtain the missing requests from the
first LAN. Since the number of weak operations per-
formed in the first LAN increases asα increases, the time
to update the lagging replicas in the other partition also
goes up; this puts a temporary strain on the network, ev-
idenced by the dip in the throughput of weak operations
when the partition heals. However, this dip is brief com-
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Figure 4: Varying partition durations with no concurrent
operations. Baseline represents the minimal unavailabil-
ity expected for strong operations, which is equal to the
partition duration.

pared to the duration of the partition. We explore the
impact of the duration of partitions next.

Varying partition duration. Using the same setup, we
now vary partition durations between 1 and 5 minutes
for α = 75%. For each partition duration, we measure
the period of unavailability for both weak and strong op-
erations. The unavailability is measured as the number
of seconds for which the observed throughput, on either
side of the partition, was less than 10% of the average
throughput observed before the partition started. Also,
the distance from the “Strong” line to the baseline (x= y)
indicates how soon after healing the partition can strong
operations be processed again.

Figure 4 presents the results. We observe that weak
operations are always available in this experiment since
all weak operations were completed in the first LAN and
the replicas in the first LAN are up-to-date with each
other to process the next weak operation. Strong oper-
ations are unavailable for the entire duration of the par-
tition due to unavailability of the replicas in the second
LAN and the additional unavailability is introduced by
Zeno due to the operation transfer mechanism. However,
the additional delay is within 4% of the partition duration
(12 seconds for a 5 minute partition). Our current proto-
type is not yet optimized and we believe that the delay
could be further reduced.

Varying request size. In this experiment, we simulate
a partition for 60 seconds but increase the payload sizes
from 2 Bytes to 1 KB, with an equally sized reply. The
cumulative bandwidth of requests to be transferred from
one LAN to the other is a function of the weak request
offered load, the size of the requests, and the duration of
the partition. With 60 seconds of partition and an offered
load of 500 req/s, the cumulative request payload ranges
from approximately 60 KB to 30 MB for 2 Bytes and
1 KB request size respectively. The results we obtained
are very similar to those in Figure 3 so we do not repeat
them. These show that the time to bring replicas in the
second LAN up-to-date does not increase significantly
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Figure 5: Network partition for 60 seconds starting at
time 90 seconds. Note that the throughput of weak and
strong operations in Zeno is presented separately for clar-
ity.

with the increase in request size. Given that we have 100
Mbps links connecting replicas to each other, bandwidth
is not a limiting resource for shipping operations at these
offered loads.

6.2.3 Partition with concurrency

In this experiment, we keep half the clients on each side
of a partition. This ensures that both partitions observe
a steady load of weak operations that will cause Zeno
to first perform a weak view change and later merge the
concurrent weak operations completed in each partition.
Hence, this microbenchmark additionally evaluates the
cost of weak view changes and the merge procedure. As
before, the primary for the initial view resides in the first
LAN. We measure the overall throughput of weak and
strong operations completed in both partitions. Again,
we compare our results to Zyzzyva.

Varying α. Figure 5 presents the results for the
throughput of different systems while varying the value
of α. We observe three main points.

When α = 0, Zeno does not give additional bene-
fits since there are no weak operations to be completed.
Also, as soon as the partition starts, strong operations are
blocked and resume after the partition heals. As above,

Zyzzyva provides greater throughput thanks to its single-
phase execution of client requests, but it is as powerless
to make progress during partitions as Zeno in the face of
strong operations only.

Whenα = 25%, we have only one client sendingweak
operations in one LAN. Since there are no conflicts, this
graph matches that of Figure 3.

Whenα ≥ 50%, we have at least two weak clients, at
least one in each LAN. When a partition starts, we ob-
serve that the throughput of weak operations first drops;
this happens because weak clients in the second parti-
tion cannot complete operations as they are partitioned
from the current primary. Once they perform the neces-
sary view changes in the second LAN, they resume pro-
cessing weak operations; this is observed by an increase
in the overall throughput of weak operations completed
since both partitions can now complete weak operations
in parallel – in fact, faster than before the partition due
to decreased cryptographic and message overheads and
reduced round trip delay of clients in the second parti-
tion from the primary in their partition. The duration
of the weak operation unavailability in the non-primary
partition is proportional to the number of view changes
required. In our experiment, since replicas with ids 2
and 3 reside in the second LAN, two view changes were
required (to make replica 2 the new primary).

When the partition heals, replicas in the first view de-
tect the existence of concurrency and construct a POD,
since replicas in the second LAN are in a higher view
(with v = 2). At this point, they request a NEWV IEW

from the primary of view 2, move to view 2, and then
propagate their locally executed weak operations to the
primary of view 2. Next, replicas in the first LAN need
to fetch the weak operations that completed in the sec-
ond LAN and needs to complete them before the strong
operations can make progress. This results in additional
delay before the strong operations can complete, as ob-
served in the figure.

Varying partition duration. Next, we simulate parti-
tions of varying duration as before, forα = 75%. Again,
we measure the unavailability of both strong and weak
operations using the earlier definition: unavailability is
the duration for which the throughput in either parti-
tion was less than 10% of average throughput before
the failure. With a longer partition duration, the cost of
the merge procedure increases since the weak operations
from both partitions have to be transferred prior to com-
pleting the new client operations.

Figure 6 presents the results. We observe that weak
operations experience some unavailability in this sce-
nario, whose duration increases with the length of the
partition. The unavailability for weak operations is
within 9% of the total time of the partition.



 0

 50

 100

 150

 200

 250

 300

 300 240 180 120 60

U
na

va
ila

bi
lit

y 
(s

)

Fault duration (s)

Strong
Weak

Baseline

Figure 6: Varying partition durations with concurrent
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The unavailability of strong operations is at least the
duration of the network partition plus the merge cost
(similar to that for weak operations). The additional un-
availability due to the merge operation is within 14% of
the total time of the partition.

Varying execution cost and request load. In this ex-
periment, we vary the execution cost of each operation as
well as increase the request load, by increasing the num-
ber of clients, to estimate the cost of merges when the
system is loaded. For example, the system was operat-
ing at peak cpu utilization with 20 clients and operations
with 200µs/operation or more. Here, we setα = 100%.
We present results with a partition duration of 60 seconds
in Figure 7. We observe that as the cost of operations
system load increases, the unavailability of weak opera-
tions also goes up. This is expected because the set of
weak operations performed in one partition must be re-
executed at the replicas in the other partition during the
merge procedure. As the client load and the cost of op-
eration execution increases, the time taken to re-execute
the operation also increases. In particular, when the sys-
tem is operating at 100% cpu utilization, the cost of re-
executing the operations will take as much as time as the
duration of the partition, and therefore the unavailability
in these cases is higher than the partition duration. If,
however, the system is not operating at peak utilization,
the cost of merging is lower than the partition duration.

Varying request size. We ran an experiment with a 5
minute partition, and varying request sizes from 2 Bytes
to 1 KB. The results with different request sizes were
similar to those shown in Figure 5 so we do not plot them.
We observed that increasing the payload size does not
significantly affect the merge duration. This is due to the
high speed network connection between replicas.

Summary. Our microbenchmark results show that
Zeno significantly improves the availability of weak op-
erations and the cost of merging is reasonable as long
as the system is not overloaded. This allows Zeno to
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quickly start processing strong operations soon after par-
titions heal.

6.2.4 Mix of strong and weak operations

In this experiment, we allow each client to issue a mix of
strong and weak operations. Note that as soon as a client
issues a strong operation in a partition, it will be blocked
until the partition heals. We use a client population of 40
nodes. Each client issues a strong operation with proba-
bility p, weak operations with probability 0.8− p, and
exits from the system with a fixed probability of 0.2.
We implement a fixed think time of 10 seconds between
operations issued by each client. The think times and
the exit probability are obtained from the SpecWeb2005
banking benchmark [11]. Next, we varyp to estimate
the impact of failure events such as network partitions on
the overall user experience. To give an idea of reference
values forp, we looked into the types and frequencies
of distinct operations in existing benchmarks. In an e-
banking benchmark, and assigning the billing operations
to be strong operations, the recommended frequency of
such operations followsp = 0.13 [11]. In the case of
an e-commerce benchmark, if the checkout operation is
considered strong while the remaining, such as login, ac-
cessing account information and customizations are con-
sidered as weak operations, then we obtainp = 0.05 [1].
Our experimental results cover these values.

We simulate a partition duration of 60 seconds and cal-
culate the number of clients blocked and the length of
time they were blocked during the partition. Figure 8
presents the cumulative distribution function of clients
on they-axis and the maximum duration a client was
blocked on thex-axis. This metric allows us to see how
clients were affected by the partition. With Zyzzyva, all
clients will be blocked for the entire duration of the par-
tition. However, with Zeno, a large fraction of clients
do not observe any wait time and this is because they
exit from the system after doing a few weak operations.
For example, more than 70% of clients do not observe
any wait time as long as the probability of performing a
strong operation is less than 15%. In summary, this result
shows that Zeno significantly improves the user experi-
ence and masks the failure events from being exposed
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to the user as long as the workload contains few strong
operations.

7 Related Work

The trade-off between consistency, availability and tol-
erance to network partitions in computing services has
become folklore long ago [7].

Most replicated systems are designed to be “strongly”
consistent, i.e., provide clients with consistency guaran-
tees that approximate the semantics of a single, correct
server, such as single-copy serializability [21] or lineariz-
ability [23].

Weaker consistency criteria, which allow for better
availability and performance at the expense of letting
replicas temporarily diverge and users see inconsistent
data, were later proposed in the context of replicated ser-
vices tolerating crash faults [18, 33, 35, 40]. We improve
on this body of work by considering the more challeng-
ing Byzantine-failure model, where, for instance, it may
not suffice to apply an update at a single replica, since
that replica may be malicious and fail to propagate it.

There are many examples of Byzantine-fault tolerant
state machine replication protocols, but the vast major-
ity of them were designed to provide linearizable seman-
tics [4,9,12,24]. Similarly, Byzantine-quorum protocols
provide other forms of strong consistency, such as safe,
regular, or atomic register semantics [30]. We differ from
this work by analyzing a new point in the consistency-
availability tradeoff, where we favor high availability and
performance over strong consistency.

There are very few examples of Byzantine-fault toler-
ant systems that provide weak consistency.

SUNDR [27] and BFT2F [28] provide similar forms
of weak consistency (fork and fork*, respectively) in
a client-server system that tolerates Byzantine servers.
While SUNDR is designed for an unreplicated service
and is meant to minimize the trust placed on that server,
BFT2F is a replicated service that tolerates a subset of
Byzantine-faulty servers. A system with fork consis-
tency might conceal users’ actions from each other, but if

it does, users get divided into groups and the members of
one group can no longer see any of another group’s file
system operations.

These two systems propose quite different consistency
guarantees from the guarantees provided by Zeno, be-
cause the weaker semantics in SUNDR and BFT2F have
very different purposes than our own. Whereas we are
trying to achieve high availability and good performance
with up to f Byzantine faults, the goal in SUNDR and
BFT2F is to provide the best possible semantics in the
presence of a large fraction of malicious servers. In the
case of SUNDR, this means the single server can be ma-
licious, and in the case of BFT2F this means tolerating
arbitrary failures of up to2

3 of the servers. Thus they
associate client signatures with updates such that, when
such failures occur, all the malicious servers can do is
conceal client updates from other clients. This makes the
approach of these systems orthogonal and complemen-
tary to our own.

Another example of a system that provides weak con-
sistency in the presence of some Byzantine failures can
be found in [34]. However, the system aims at achieving
extreme availability but provides almost no guarantees
and relies on a trusted node for auditing.

To our knowledge, this paper is the first to consider
eventually-consistent Byzantine-fault tolerant generic
replicated services.

8 Future Work and Conclusions

In this paper we presented Zeno, a BFT protocol that
privileges availability and performance, at the expense
of providing weaker semantics than traditional BFT pro-
tocols. Yet Zeno provides eventual consistency, which
is adequate for many of today’s replicated services, e.g.,
that serve as back-ends for e-commerce websites. Our
evaluation of an implementation of Zeno shows it pro-
vides better availability than existing BFT protocols,
and that overheads are low, even during partitions and
merges.

Zeno is only a first step towards liberating highly avail-
able but Byzantine-fault tolerant systems from the expen-
sive burden of linearizability. Our eventual consistency
may still be too strong for many real applications. For
example, the shopping cart application does not neces-
sarily care in what order cart insertions occur, now or
eventually; this is probably the case for all operations
that are associative and commutative, as well as oper-
ations whose effects on system state can easily be rec-
onciled using snapshots (as opposed to merging or to-
tally ordering request histories). Defining required con-
sistency peroperation typeand allowing the replication
protocol to relax its overheads for the more “best-effort”
kinds of requests could provide significant further bene-



fits in designing high-performance systems that tolerate
Byzantine faults.
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A Non-PKI based Zeno

In this section, we describe a version of Zeno that uses
MACs in the normal case operation (i.e., for authenti-
cating REQUEST, REPLY, ORDERREQ, COMMIT , and
CHECKPOINT messages) but continues to use PKI based
signatures for the view change messages. Using MACs
in the normal case operation affects the request process-
ing, conflict detection, merge, and view change logic. We
describe these modifications in this section.

A.1 Request validity proof
A common problem in MAC based protocols is verifying
client requests. For example, a faulty client can carefully
construct an authenticator that only verifies at the pri-
mary replica. Such a request will be assigned a sequence
number by the correct primary, but will not be verified by
other replicas and hence will be dropped. Unfortunately,
it is impossible to detect if the corrupted authenticator is
due to a faulty primary or a faulty client. Existing proto-
cols provide mechanisms to deal with such requests. At
a high level, these mechanisms ensure that all non-faulty
replicas either pick the same request for execution at a
sequence number or all decide to choose a specialno-op
operation. Since Zeno is based on Zyzzyva, we use the
mechanism proposed by Zyzzyva [25].

Briefly, the mechanism works as follows. If a replica
is unable to verify a client request, it requests an authen-
tication proof from the primary. The primary responds
with a proof, which can be one of the following:

1. same request signed using PKI by the client

2. a validity proof, consisting of PKI signatures from
f +1 replicas that have correctly verified the client
request

3. an invalidity proof, consisting of PKI signatures
from 2f + 1 replicas, out of which onlyf or less
replicas correctly verified the client request

If the primary does not possess this proof, the primary
asks all replicas to check if they can verify the client
request. If a replica can correctly verify the request, it
sends a PKI signed message to the primary to confirm the
validity of the request, otherwise it responds with an “au-
thentication failure” message, also signed with PKI. The

primary receives these responses, constructs the proof,
and sends the proof to all replicas. All correct replicas
make identical decisions based on the proof sent by the
primary. If the primary is faulty and sends two differ-
ent authentication proofs, other replicas initiate a view
change.

Using MACs in the normal case also affects the spec-
ification of our service in the following way. Suppose
a faulty client sends a request to a weak partition with a
corrupted authenticator such that the request verifies only
at ( f + 1) replicas, out of which only one is non-faulty.
That correct replica will be responsible for forwarding
the request to other replicas during future merges. How-
ever, since the authenticator is corrupted, the request will
not verify at other non-faulty replicas, causing it to be
dropped by Zeno during subsequent merges. Therefore,
it is possible for requests from faulty clients to appear in
the tentative history but to disappear from the linearized
history of the service. In contrast, requests from correct
clients will always appear in the linearized history of the
service. In order to handle this case, we modified the
merge operation in the specification. (Figure 9).

Transitions:

MERGE
Pre: |H | ≥ 2
Eff: select{h,h′} ⊆ H

h′′ := mergeh andh′ - of
remove duplicates
of are subset of all operations from faulty clients
committed(h′′) := max(committed(h),committed(h′))
H := H −{h,h′}+{h′′}

Figure 9: Modified Merge procedure for MAC-based
Zeno. of represents the subset of operations issued by
faulty clients.

Similarly, the liveness property of Zeno is modified as
follows:

(L2’) If there exists an eventually synchronous set of 2f +
1 correct serversΠ′, then every weakly complete
request issued by acorrect clientor a strong request
issued by a correct client is eventually committed.

Recall that in the PKI-based Zeno, every weakly com-
pleted request from faulty clients were also guaranteed
to be eventually committed.

A.2 Reply and Commit Messages
We now describe the modification to how replicas con-
struct reply and commit messages. First, backup repli-
cas do not include the OR in REPLY messages. Sec-
ond, backup replicas also do not include the OR in the
COMMIT message. Both are due to inherent weakness



of MACs—even if a replica or a client detects misbehav-
ior of the primary, others may not be able to verify it.
These modifications are identical to how Zyzzyva oper-
ates when using MACs.

A.3 Conflict Detection
The conflict detection procedure in the PKI version had
three subcases: (i) Proof of Misbehavior (POM), (ii)
Proof of Divergence (POD), and (iii) Proof of Absence
(POA). Below, we consider the implication of using
MACs on these subcases and show that POM/POD/POA
do not guarantee that conflicts will be detected.

POM/POD A POM (POD) essentially consists of two
OR messages for the same sequence number that are sent
by the same (different) primary and that have been as-
signed different requests. With PKI, if one non-faulty
replica collects a POM (POD), it can convince other non-
faulty replicas of the primary’s misbehavior and trigger
a merge. Unfortunately, MACs do not provide this capa-
bility since an OR that conflicts with the local OR stored
at a replica may not verify correctly at the replica. There-
fore, a faulty primary can keep non-faulty replicas from
detecting divergence and no POM (POD) is generated
by any non-faulty replica. Even if a non-faulty replica
is able to generate a POM (POD), we can not guarantee
that other non-faulty replicas will generate the identical
POM (POD) since the conflicting OR’s may not verify
at all non-faulty replicas.

POA Since a POA contains the ORs from an earlier
view that spans the ORs contained in the NEWV IEW

message, the ORs in the POA may not verify correctly
at other non-faulty replicas. Therefore, POAs also share
the same problem as POM/PODs.

A.3.1 MAC-based conflict detection

We now present a new conflict resolution procedure that
works with MACs.

Overview In traditional BFT protocols, if replicas are
unable to commit requests, they can trigger a view
change. This is important for detecting a faulty primary
that sends either a divergent history in ORs or sends ORs
that do not correctly verify at correct replicas. By check-
ing that at least 2f +1 replicas have verified and received
identical history in the ORs, existing protocols ensure
that a faulty primary that sends corrupted MACs or in-
consistent ORs is eventually replaced. At a high level,
we use a similar idea to detect conflicts. In a strong par-
tition, replicas check if they can commit requests. Oth-
erwise, non-faulty replicas suspect divergence and initi-
ate a view change. In a weak partition, replicas check
if the history in the OR they received from the primary
matches the history present in the OR received byall

other replicas in the partition. Otherwise, non-faulty
replicas suspect divergence and initiate a view change.

Divergence in the same view Suppose replicai in
view vi receives a messagem from replica j for sequence
numbern and view vj . Here,m is either an OR or a
COMMIT .

Algorithm 1 presents the logic for detecting conflicts
within the same view, i.e.,vi = v j .

Each replica maintains two two-dimensional arrays,
matchingHistory and divergentHistory , to
detect conflicts. We first describe how these arrays
are initialized. When a replica receives an OR from
the primary with id k for n, it stores the OR in
matchingHistory[n][k] .

If a replica expects to commit atn, e.g., for generating
a checkpoint atn or when the request assigned ton is a
strong operation, then theδ [n] timer is started. When a
replicai sends a COMMIT message, it stores the COMMIT

message inmatchingHistory[n][i] . When a
replica receives a COMMIT message from replicaj with a
history chain digest identical to the history chain digest it
has received from the primary in the OR forn, the replica
stores the message inmatchingHistory[n][j] . If
an OR sent by the same primary but with a different his-
tory is received, then the primary is faulty, and replica
initiates a view change. If a COMMIT is received from
another replica with a different history, then the replica
stores the message indivergentHistory[n][j] .

When theδ [n] timer expires, replicas calculate the
size of these arrays. Let|matchingHistory[n] |=M,
meaning thatM replicas share a matching history for se-
quence numbern. Let |divergentHistory[n] |=D,
meaning thatD replicas have divergent histories forn.
Let C = M + D, which represents the total number of
other replicas a local replica is able to communicate with
within δ time period. Then, the replica checks that:

1. M ≥ (2 f +1) // which implies C≥ (2 f +1)

2. (C < 2 f +1)∧ (D == 0)

If either of these conditions is satisfied, the replica
concludes that there is no divergence. Otherwise, the
replica suspects divergence and initiates a view change.

A careful reader will ask: why do we have theδ timer
and the condition onM andD in the MAC-version of the
protocol, compared to conflict detection in the PKI ver-
sion, where simple comparison of history chain digest
was enough? The reason is intimately tied to the weaker
properties of MACs compared to PKI signatures. We rely
on our synchrony assumption to ensure that, within theδ
time period, every pair of non-faulty replicas can com-
municate with each other. If there is divergence in the



Algorithm 1 Divergence in the same view (vi = v j )

1: // m is either anOR or a COMMIT message
2: if m is not properly authenticatedthen
3: Return.
4: // Let remote replica’s id be j
5: // Assume i’s highest sequence number is nhighest

6: if n > nhighest then
7: Multicast fillHole for [nhighest+1, n]. Return.
8: else
9: // We must have theORDERREQ for n. Call it mi

10: if m is OR then
11: // Compare histories to detect divergence
12: if m.h 6= mi .h then
13: /* History is divergent. BothOR’s are sent

by same primary, so replace it.*/
14: Initiate view change. Return.
15: if m is COMMIT then
16: if m.h 6= mi .h then
17: /* History is divergent.ORandCOMMIT are

sent by different replicas. Therefore, does not
prove that primary is faulty.*/

18: Storem in divergentHistory[n][j] .
19: else
20: // History matches
21: Storem in matchingHistory[n][j] .

history of non-faulty replicas, neither of the above con-
ditions will hold, causing a view change to be initiated,
and hence a merge of the divergent histories.

We now look at these conditions in detail:

1. Assume that all non-faulty (2f + 1 or more) repli-
cas in a partition can eventually communicate with
each other inδ time. For committing requests, the
2 f COMMIT messages sent by replicas must match
the OR that the primary sent, for a total of 2f + 1
replicas with matching history. Otherwise, requests
can not be committed because of divergence in the
history of non-faulty replicas and view change must
be initiated. Therefore,M ≥ 2 f + 1 and hence
C≥ 2 f +1.

2. Assume that fewer than 2f + 1 non-faulty repli-
cas can eventually communicate with each other in
δ time (a weak partition). To guarantee progress
for weak operations, we require at leastf + 1 non-
faulty replicas. However, if the primary is faulty, it
can send divergent histories in the OR’s to different
replicas, which will cause the reply fromf +1 non-
faulty replicas to not match, and therefore prevent
the weak operations from completing at clients.

By requiringD == 0, we require that all reachable
replicas have identical history. In a synchronous
weak partition, this condition ensures that diver-

gence introduced by a faulty primary will be de-
tected and view change initiated.

Note that it is also necessary to requireD == 0. It is
not sufficient to haveM ≥ f +1 in a weak partition
(C < 2 f + 1). To see this, consider the case where
out of f +1 replicas that have matching histories,f
are faulty. These faulty replicas may not respond,
preventing the client from receivingf +1 matching
replies, which violates our liveness requirementL1.
Ensuring that no divergence exists among replicas
during a weak partition prevents this problem.

However, requiring identical history at all replicas
introduces a potential liveness problem. Suppose a
faulty replica sends a COMMIT with a history that
is divergent from the history sent by the correct pri-
mary. The non-faulty replicas will suspect the cor-
rect primary to be faulty and trigger a view change,
even when the primary is correct. The view change
affects performance but does not violate the liveness
guarantee since Zeno makes progress in between
view changes (Section A.4).

Divergence across views So far we have presented
the conflict detection procedure for replicas in the same
view. Now consider the case where replicas are in
different views (Algorithm 2). When replicai re-
ceives a messagem from replica j, it checks if the
remote view inm is higher than the local view. If
so, i requests the NEWV IEW from j. If the local
view is higher, on the other hand, theni sends the
local NEWV IEW to j. When a replica receives the
NEWV IEW message for a higher view, it verifies the
message, and then moves to the higher view. At this
point, the replica removes all previous state for conflict
detection; i.e, it clearsmatchingHistory[][] and
divergentHistory[][] , cancels theδ [] timers,
and proceeds according to the merge procedure described
in Section A.5. Note that it is safe to discard these ar-
rays and timers since, oncef +1 non-faulty replicas are
synchronous in the same view, any divergence will be
detected using the procedure for detecting divergence in
the same view.

Algorithm 2 Divergence across views (vi 6= v j )

1: // m is either anOR or a COMMIT message
2: if m is not properly authenticatedthen
3: Return.
4: if v j > vi then
5: Ask for NEWV IEW message. Return.
6: if v j < vi then
7: Send our NEWV IEW message. Return.



A.3.2 Impact on safety

The safety guarantee of Zeno for strong operation still
holds since the conflict detection protocol described
above does not change how replicas commit operations.

The argument of safety for weak operations directly
follows the argument in the PKI version. The weak oper-
ations still require at leastf +1 matching replies. A non-
faulty replica does not maintain two concurrent histories,

therefore, at mostmaxhist= ⌊ n−| f ′|
f+1−| f ′|⌋ concurrent histo-

ries can exist in the presence off ′ faulty replicas.

A.3.3 Impact on liveness

With respect to liveness, we need to argue that, when a
faulty primary introduces conflicts, eventually, the con-
flicts are detected and view change is initiated. Also, we
need to argue that progress is made when the primary is
non-faulty.

Same view Assume that all replicas are in the same
view. We need to ensure that: (i) view changes are initi-
ated for the faulty primary in a strong partition, (ii) view
changes are initiated for the faulty primary in a weak par-
tition, and (iii) progress is made when the primary is non-
faulty.

1. Assume an eventually synchronous strong partition
with at least 2f +1 non-faulty replicas and a faulty
primary. If replicas are unable to commit opera-
tions, thenM < 2 f +1, since otherwise replicas will
be able to commit requests. Hence, if there is diver-
gence, correct replicas will initiate a view change.

2. Assume an eventually synchronous weak partition
with at leastf + 1 correct replicas and a faulty pri-
mary. Suppose a correct client does not receive
f + 1 matching replies. When replicas exchange
the COMMIT messages (e.g., during the checkpoint
interval), correct replicas will obtain at least one
COMMIT message that does not match the history
it received in the OR from the primary. This en-
sures thatD > 0, causing all correct replicas in the
weak partition to initiate a view change.

3. Assume an eventually synchronous weak partition
with at least f + 1 correct replicas, the primary is
correct, and at least one replica is faulty. A faulty
replica can send a COMMIT message with history
that diverges with the history sent by the correct pri-
mary. This will causeD to be greater than 0, trigger-
ing the non-faulty replicas to initiate a weak view
change. However, replicas give priority to complet-
ing ORs in the same view before processing the
view change messages (see Section 4.5). There-
fore, even though faulty replicas can cause continu-
ous view changes in a weak partition, Zeno makes

progress as long asf +1 non-faulty replicas are syn-
chronous and hence maintains its liveness guaran-
tee.

Different views We have so far seen that a faulty pri-
mary will be eventually replaced as long as enough non-
faulty replicas are in the same view and synchronous.
Now consider the case where replicas are in different
views. In this case, replicas from the lower view will
request the NEWV IEW message but will continue to op-
erate in their current view. Once a NEWV IEW message
is received, a replica can immediately check its validity
(since it is signed using PKI), and move to the higher
view. If there are at leastf + 1 non-faulty replicas in a
synchronous partition, each non-faulty replica will move
to the highest view of any given non-faulty replica. At
that point, if the primary is correct, the weak operations
can complete or divergence will be detected and a view
change triggered.

A.4 View change

Since Zeno is based on Zyzzyva, we first describe
Zyzzyva’s view change protocol when MACs are used
in the normal case. Note that the view change protocol
messages are signed using PKI signatures.

A.4.1 View Change in Zyzzyva

When a replica suspects the current primary to be
faulty, it sends a IHATETHEPRIMARY message to
all other replicas. Once replicai receives f + 1
IHATETHEPRIMARY messages, it gathers a proof for its
local commit certificate (CC) and checkpoint certificate
by requesting all other replicas to send their signature for
the highest CC and the checkpoint that replicai locally
possesses. If replicaj has received an order request for
the specified CC, then it replies with a signature for that
order request. If replicaj has sent the checkpoint mes-
sage previously thenj responds with a signature for that
checkpoint. Replicai considersf +1 signatures to com-
plete the commit and the checkpoint certificate proofs.
Once replicai has these proofs, it sends a view change
message to the new primary.

The new primary waits to receive 2f + 1 non-
conflicting view change messages. Two view change
messages are conflicting if they contain CC proofs for
different requests at the same sequence number. Since
CC proposed by non-faulty replicas do not conflict, and
if the wait time is sufficiently long, a non-faulty pri-
mary will obtain 2f + 1 non-conflicting view change
messages.

The new primary then constructs a NEWV IEW mes-
sage based on the 2f + 1 non-conflicting view change
messages and sends it to other replicas.



A.4.2 Challenge for Zeno

For strong partitions, Zeno keeps the structure of the
view change similar to Zyzzyva. However, view changes
in weak partitions are challenging. Recall that a non-
faulty replica waits to receive at leastf + 1 proofs (in-
cluding its own) for its CC and the checkpoint before
sending a VIEWCHANGE message. This poses a chal-
lenge for weak partitions with less than 2f +1 non-faulty
replicas. In this situation, a replica with the highest
CC may not obtain a proof since remaining non-faulty
replicas in the partition may not have received the order-
ing corresponding to the CC and other replicas could be
faulty and not respond. Therefore, the new primary may
not get enough view change messages to construct the
NEWV IEW message, compromising the liveness of the
view change protocol.

Solution The eventual consistency guarantee provided
by Zeno in a weak partition offers an opportunity to de-
sign a new view change protocol that is live. We in-
troduce the following three changes in the view change
logic described earlier.

1. Like Zyzzyva, before sending the VIEWCHANGE

message, a replica requests a proof of its local CC
and checkpoint message from other replicas. How-
ever, unlike Zyzzyva, a replica starts a timer for
δ time after sending the request for the proof. A
replica then sends the view change message if either
it has received the proof or if theδ timer expired
(even if has not yet received the requested proofs).
This relaxation is crucial for view change to be live
and is sufficient for eventual consistency semantics,
as described below in Section A.4.3.

2. The new primary selects thef + 1 non-conflicting
view change messages to construct the NEWV IEW

message. (This is based on the observation that
view change messages sent by non-faulty replicas
do not conflict.) Hence, eventually, a new primary
will be able to send a NEWV IEW message. Note
that there may not be a proof of the highest CC and
checkpoint message in the NEWV IEW message.

3. A replica who possesses a CC that is conflicting
with the CC picked in the new weak view does not
participate in the weak view and continues to send
view change messages for the next view. This en-
sures that committed operations are not lost across
view changes.

Dealing with strong operations in a weak partition
In a weak partition, strong operations can not be com-
pleted. A client will therefore keep retransmitting the
strong operation. In a traditional BFT protocol, such

retransmissions will lead to continuous view changes.
In Zeno, however, we must avoid these view changes
since weak operations must complete efficiently even in a
weak partition. When a strong operation is received and
ordered by the primary, replicas start the commit phase
by sending a COMMIT message. The conflict detection
mechanism described earlier is also triggered whenever
replicas intend to commit an operation. If a conflict is
detected, view change is triggered. Otherwise, if no con-
flict is detected, the retransmission is neglected and un-
necessary view changes are avoided.

However, if the operation is not yet ordered, the usual
logic is followed, i.e., a replica forwards the operation to
the primary and starts the IHATETHEPRIMARY timer. If
ordering is not received before the timer expires, a replica
sends the IHATETHEPRIMARY message to all replicas.

A.4.3 Impact on safety

We argue that the safety of strong operations is not af-
fected by weak view changes. The reason is that a non-
faulty replica never replaces its own CC with a con-
flicting CC. Therefore, the correct replicas that partici-
pated in a commit operation ensure that the order of the
committed operation does not change across weak view
changes.

The argument of safety for weak operations directly
follows the argument in the PKI version. The weak oper-
ations still require at leastf +1 matching replies. A non-
faulty replica does not maintain two concurrent histories,

therefore, at mostmaxhist= ⌊ n−| f ′|
f+1−| f ′|⌋ concurrent histo-

ries in the presence off ′ faulty replicas.

A.4.4 Impact on liveness

Suppose a client is unable to complete its weak opera-
tions. If the primary is faulty and is introducing con-
flicts, the conflict detection procedure described in Sec-
tion A.3.1 will eventually detect the conflict and initi-
ate a view change. If the primary is dropping requests
or is silent, traditional mechanisms will initiate a view
change. Now we argue that the weak view change proto-
col is live.

Assume an eventually synchronous weak partition and
that a non-faulty replica becomes the primary for the
next view. Each of the non-faulty replicas will either re-
ceive the proof of their CC and checkpoint or timeout
and sends the VIEWCHANGE message to the primary.
Therefore, the new primary will be able to receive at least
f + 1 view change messages that do not conflict with
each other and sends the NEWV IEW message. (Recall
that the view change message sent by non-faulty replicas
do not conflict with each other.)

Assume an eventually synchronous weak partition and
that a faulty replica becomes the primary and sends a
NEWV IEW message that conflicts with the highest CC



of a correct replica. That correct replica will not partic-
ipate in the new view. If the view is live, i.e., the faulty
primary assigns consistent ordering to weak operations,
the weak operations will be completed. (Although, it is
possible that the highest CC is not incorporated in this
view.) Otherwise, more view changes will be triggered
and eventually a non-faulty replica will be elected as the
primary.

We now argue that, in an eventually synchronous weak
partition, retransmissions of strong operations by correct
clients can not cause continuous view changes if none
of the replicas are faulty. (Recall that a faulty replica
can cause continuous view changes in a weak partition,
as noted above, but progress is made in-between view
changes.) If none of the replicas are faulty, the conflict
detection at the commit time (e.g., for checkpoint inter-
val) will find that D = 0. This in turn ensures that none
of the replicas initiates a view change and the retransmis-
sion of the strong operation is neglected.

Finally, we argue that while a faulty replica in a weak
partition can trigger continuous view changes, Zeno
makes progress in between such view changes. The ar-
gument is similar to Section A.3.3.

A.5 Merge

Here, we describe how replicas merge operations that
they have weakly completed but not yet committed, for
example the operations that were completed in a weak
partition. Each non-faulty replica maintains a buffer,
tentative req , of client requests that it correctly
verified but that have not yet committed. Whenever a
replica moves to a higher view, either by participating
in a view change protocol or via obtaining a NEWV IEW

message, it sends the requests intentative req
buffer to all replicas. Once a request is committed or
dropped (when a proof of its unauthenticability is ob-
tained, see Section A.1), the replica removes the request
from thetentative req buffer.

Liveness of weak operations Now we argue that Zeno
preserves the liveness of weak operations (L2’ ). Re-
call that for eventual consistency, each weakly com-
plete operation from a non-faulty client must get com-
mitted eventually. The merge procedure described above
ensures that every weakly completed operation is for-
warded to all correct replicas. Since the request is sent by
a correct client, it has a correct authenticator, and there-
fore it will be correctly verified at other non-faulty repli-
cas. Replicas will wait for a timeout and then forward
the request to the current primary if the request is not al-
ready ordered. The checkpoint protocol is periodically
initiated, ensuring that operations are committed. If the
current primary is faulty, it will be replaced eventually by
a correct primary as per the conflict detection and view

change protocol. Once a non-faulty replica is elected as
the primary, the commits will succeed and weak opera-
tions will appear in the committed history.


