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Abstract
This paper introduces the first general and rigorous formalization of the classic busy-window principle
for uniprocessors. The essence of the principle is identified as a minimal set of generic, high-level
hypotheses that allow for a unified and general abstract response-time analysis, which is independent
of specific scheduling policies, workload models, and preemption policy details. From this abstract
core, the paper shows how to obtain concrete analysis instantiations for specific uniprocessor
schedulers via a sequence of refinement steps, and provides formally verified response-time bounds
for eight common schedulers and workloads, including the widely used fixed-priority (FP) and
earliest-deadline first (EDF) scheduling policies in the context of fully, limited-, and non-preemptive
sporadic tasks. All definitions and proofs in this paper have been mechanized and verified with the
Coq proof assistant, and in fact form the common core and foundation for verified response-time
analyses in the Prosa open-source framework for formally proven schedulability analyses.
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1 Introduction

The busy-window principle is one of the most fundamental and widely known real-time
scheduling concepts. The basic idea—to bound a task’s worst-case response time by analyzing
the interval (or “window”) during which the processor remains continuously “busy” executing
a given task or interfering workload—has been applied in scores of papers on many different
scheduling policies, system models, and workload types. In practical terms, the busy-window
principle, in the form of response-time analysis (RTA) [3, 11, 27, 29, 33], provides the
theoretical underpinnings of popular commercial analysis tools (e.g., [25]).

However, despite its undeniable significance, to date no unifying theoretical framework
has been presented that explains, and rigorously justifies, why the busy-window principle
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is applicable in so many diverse settings. Rather, the general idea has become part of the
real-time folklore, spread across many papers, where it is frequently re-developed “from
scratch” using ad-hoc notation and problem-specific definitions. As previously noted by Bril
et al. [7], this results in papers differing in subtle but critical ways, especially when proofs
are rooted more in intuition and implicit assumptions than formal derivation.

To place this central element of real-time scheduling theory on firm footings, and to
enable a systematic development of verified RTAs in the Prosa [9, 34] open-source framework
for formally proven schedulability analyses, we present a rigorous, formally verified proof
of the busy-window principle using the Coq proof assistant [41]. Our proof is general and
proceeds from first principles, without the use of a “critical instant” argument. At its
core is a new abstract RTA that is independent of specific scheduling policies, workload
models, and preemption details. The existence of this abstract RTA, which relies only on a
minimal set of generic, high-level assumptions, explains why the busy-window principle is so
widely applicable and clearly identifies its mathematical essence.

From this abstract core, our proof proceeds via a sequence of refinement steps to obtain
concrete RTA instantiations for specific schedulers. As practical examples, we provide
formally verified RTAs for eight scheduler and workload combinations: earliest-deadline first
scheduling of fully preemptive tasks (EDF), fully non-preemptive tasks (NP-EDF), segmented
limited-preemptive tasks (LP-EDF), and tasks with floating non-preemptive sections (EDF-
NPS), as well as fixed-priority scheduling of the same task models (denoted FP, NP-FP,
LP-FP, and FP-NPS, respectively), all for arbitrary arrival curves and arbitrary deadlines.
Of these, three RTAs are completely novel in that they were not yet derived in prior work
(NP-EDF, LP-EDF, and EDF-NPS),1 and all but one (fully preemptive FP [13]) are formally
verified here for the first time. In particular, we provide the first verification of Davis
et al.’s [11] revised analysis of the CAN protocol (an instance of NP-FP scheduling).

At a more technical level, this paper makes a contribution in the area of mechanized
proofs for real-time systems. Despite many advances in proof assistants in recent years,
mechanized proofs still suffer from a key problem: even a conceptually simple change in the
underlying model can render a mechanized proof thoroughly inapplicable, and thereby easily
induce dozens of person-hours of “proof maintenance.” This problem is even more relevant
in the area of real-time systems, where a lot of proofs rely on similar ideas but apply to
(slightly) different models. It would thus be a Sisyphean task to mechanize the analysis of
many such related models without a general underlying theory independent of minor model
variations. Abstract RTA provides such a foundational theory for the busy-window principle.

Related Work The origins of the busy-window principle date back more than three decades;
a good account of its history is provided by Audsley et al. [2] and Sha et al. [37].

Liu and Layland [30], in their classic analysis of FP scheduling with rate-monotonic (RM)
priorities, established that a periodic task exhibits its worst-case response time if all higher-
priority tasks release jobs simultaneously and at their maximum possible rate, which they
called the critical instant [30]. More than a decade later, a closer examination of the critical
instant led to the independent discovery of exact RTAs for FP scheduling (with any priority
order) based on the busy-window principle by several groups of authors [3, 27, 28, 29, 33].

Lehoczky [29] in particular formulated the concept of a “level-i busy period” (a.k.a. busy

1 Note that our claim is specific to RTAs—there are prior schedulability analyses of NP-EDF [26],
LP-EDF [4] and EDF-NPS [5, 39], which however do not yield nontrivial response-time bounds (i.e. they
provide only a “schedulable”/“not schedulable” answer). We focus in this paper exclusively on RTAs.
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window), which he defined as “a time interval [a, b] within which jobs of priority i or higher
are processed throughout [a, b] but no jobs of level i or higher are processed in (a− ε, a) or
(b, b + ε) for sufficiently small ε > 0” [29]. Based on this definition, he provided an RTA
for tasks with arbitrary deadlines (i.e., relative deadlines independent of a task’s period), a
case which Joseph and Pandya’s earlier RTA [27] failed to account for. Also relying on the
busy-window principle (but without giving a precise definition), Audsley et al. [3] and Tindell
et al. [42] improved the approach to support release jitter and other workload extensions.

From these beginnings, the busy-window concept spread far and wide (e.g., see [6, 7,
11, 12, 20, 21, 23, 24, 25, 36, 40, 43, 45], to list a few examples across time), and can still
be encountered on a regular basis in recent work (e.g., [22, 35, 46]). However, while the
busy-window idea spread, Lehoczky’s definition [29] did not. Rather, the concept was reused
and adapted in many ways, to the effect that remarkably few papers agree on an exact
definition of a busy window, or even provide one at all [7].

As a result of this evolution, papers tend to use diverging definitions, notations, and
proof strategies, so that it may seem that there are a lot of different methods to obtain
a response-time bound, when in fact most papers follow essentially a common argument.
Time and again, papers reason about a critical instant or otherwise construct a worst-case
execution scenario, infer a recurrence, argue that the result of a fixed-point search implies a
response-time bound, define a search space, etc. Often this is done in analogy with earlier
results and not supported by rigorous proof, which can all too easily lead to misconceptions
and flaws—and unfortunately has done so more than once (e.g., [9, 10, 11, 32]).

Another byproduct of the state of the art’s paper-by-paper approach is that it obscures
commonalities within superficially different proofs. Case in point, EDF and FP historically
have been analyzed using quite different and policy-specific terminology. Indeed, the existing
RTAs for FP [3, 7, 27, 29, 42, 45] and RTAs for EDF [20, 21, 23, 40] look like substantially
different analyses. However, as we show in this paper, RTAs for EDF and FP share the same
fundamental proof scheme, and can in fact be obtained as instantiations of our abstract RTA.

Bril et al. [7] took an important first step towards rectifying the status quo by introducing
the concept of an “active period” as a general, foundational concept that is independent
of a particular scheduling algorithm and thus reusable across papers. We argue that this
is a vital direction—a new RTA should not start from first principles, but rather build on
a well-understood general and formal foundation that comes with clear and simple proof
obligations that justify the application of the busy-window principle.

In contrast to Bril et al.’s “active period” [7], the foundation provided in this paper is
backed in full by a formal, mechanized proof checked with the Coq proof assistant. The first
successful attempt to mechanize schedulability analysis is due to Wilding [44], who proved
optimality of EDF on uniprocessors using the early Nqthm theorem prover. In another early
effort more closely related to our work, Dutertre [13] proved the correctness of the classic RTA
for preemptive FP scheduling with blocking terms already 20 years ago using the PVS proof
system, albeit not for arbitrary arrival curves, nor as part of a general, reusable framework. In
the same work, Dutertre described and verified the behavior of the priority-ceiling protocol [38].
Much more recently, Zhang et al. [47] formally specified the priority-inheritance protocol [38]
using Isabelle/HOL, and proved a blocking bound for the protocol.

We build in this paper on Prosa [34], a Coq-based framework for real-time scheduling
theory that emphasizes readability of the specification, which was introduced by Cerqueira
et al. [9] in 2016. In 2018, Fradet et al. [14] presented a result (also using Prosa/Coq) that
in principle could be used to obtain RTAs for some of the scheduling policies considered
herein, but this possibility was never pursued. In a more applied direction, Fradet et al. [15]
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introduced CertiCAN, a Prosa-based tool for the certification of CAN schedulability analysis
results. Finally, in particularly impressive recent work, Guo et al. [19] connected Prosa [9, 34]
with a real-time extension of CertiKOS [17], thereby obtaining a verified OS kernel with an
end-to-end, machine-checked schedulability proof.

Contributions In summary, this paper advances the state of the art in three ways. First, we
introduce the first general and rigorous formalization of the busy-window principle by means
of a unified and general abstract RTA, which follows from a small, explicit set of precise
hypotheses.2 The proposed abstract RTA is intentionally independent of most practical
details (such as specific scheduling policies, how and when tasks can be preempted, arrival
models, whether they share resources or self-suspend, etc.) and can serve as a common basis
for the analysis of a wide range of uniprocessor schedulers and workloads.

Second, all definitions and proofs in this paper have been mechanized and verified with
the Coq proof assistant [41] in the open-source Prosa framework [9, 34]. Moreover, the work
presented in this paper has become the common foundation for mechanized uniprocessor
RTAs and enabled support for multiple scheduler and workload combinations in the recently
released Prosa version 0.4. Our machine-checked proofs (≈ 9,000 lines of code and comments)
are fully documented and freely available for reuse and inspection [34]. As part of the artifact
evaluation, we provide an overview of our formal proof and cross-reference key results in the
paper with the corresponding lemmas and theorems in the formal Coq development [1].

Third, as a case study in applying abstract RTA to specific scheduling problems, we
provide eight formally verified response-time analyses for non-self-suspending sporadic tasks
with arbitrary deadlines and arbitrary arrival curves under EDF, NP-EDF, LP-EDF, EDF-
NPS, FP, NP-FP, LP-FP, and FP-NPS uniprocessor scheduling. For seven of these schedulers,
this paper presents the first formal verification of a state-of-the-art RTA. In fact, to the best
of our knowledge, for three of these policies—NP-EDF, LP-EDF, and EDF-NPS—we provide
the first known RTAs. For the other five policies, this paper verifies the known exact RTAs.
In particular, the four RTAs for FP scheduling verified in this paper correspond to results
that can also be obtained from Yao et al.’s general analysis of LP-FP scheduling [45].

2 System Model

In this section, we describe the general system model on which we base our analysis. We focus
on unit-speed uniprocessor systems in this paper and assume a discrete-time model, where
the smallest quantity ε , 1 represents an indivisible unit of time (e.g., a processor cycle).

Workload We consider workloads modeled as a set of n sporadic real-time tasks τ =
{τ1, . . . , τn}. Each task τi = (Ci, Di, αi) is characterized by its worst-case execution time (or
cost) Ci, its relative deadline Di, and an arrival-bound function αi(∆), which upper-bounds
the number of times that τi is activated in any interval of length ∆. We also define the
request-bound function (RBF) of task τi as RBF i(∆) , Ci × αi(∆).

Whenever a task is activated, a corresponding job is released. We let Ji,j denote the j-th
job (or activation) of task τi. Each job Ji,j has a release (or activation) time ai,j , absolute
deadline di,j = ai,j +Di, and execution time ci,j , where 0 ≤ ci,j ≤ Ci. To finish, Ji,j must
receive exactly ci,j units of service from the scheduler. We denote Ji,j ’s completion (or finish)

2 We use the term “hypothesis” in the mathematical sense to refer to an explicitly stated assumption
upon which a proof rests, not in the colloquial sense meaning an “unproven theory or conjecture.”
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time as fi,j . A job’s cost may be zero, in which case it is trivially finished immediately upon
release. A job is pending at time t if it is released and not yet completed (i.e., if ai,j ≤ t < fi,j).

A job’s response time ri,j is given by ri,j , fi,j−ai,j . The goal of a response-time analysis
of task τi is to establish an upper bound Ri such that ri,j ≤ Ri for any job Ji,j of τi. Note
that such an upper bound need not be exact, nor does it necessarily exist.

Schedule and Service We next define the central notions that relate the workload to the
underlying processor model. For clarity, we let T denote the time domain (the natural
numbers including zero, i.e., T = N), B = {0, 1} the boolean domain, and J = {Ji,j}∀i,j the
set of all jobs. Furthermore, we let S denote the service domain, which is another synonym
of the natural numbers (i.e., S = N) that we use to disambiguate the notions of an instant or
duration t ∈ T and the amount of accumulated service ρ ∈ S received by a job.

A schedule is a function σ : T→ {⊥} ∪ J that maps each point in time t to the job (if
any) that is scheduled at time t, or to a constant ⊥ that indicates that the processor is idle.
A job can be scheduled only when it is pending.

A scheduling policy determines how the schedule is constructed. In Sections 3–6.1, we
place no restriction on the type of scheduling policy considered. In Section 6.2, we focus
our attention on job-level fixed-priority (JLFP) policies [8], which are policies that assign a
fixed priority to each pending job, and then execute (any one of) the job(s) with maximal
priority. Finally, in Section 7, we instantiate our abstract RTA for two specific JLFP policies,
namely the two most prominent representatives of this class: FP and EDF scheduling. We
let Jk � Ji denote that Jk has a priority that is higher than or equal to Ji’s priority, and let
Jk � Ji denote that Jk has priority strictly higher than Ji.

The scheduler is assumed to be work-conserving, which we define precisely in Section 3.2.
We further consider all scheduling overheads to be negligible, or equivalently, to already be
included in each job’s cost ci,j . While our framework and proof strategy do not preclude
the explicit modeling of overheads, a detailed consideration of overhead accounting issues is
beyond the scope of this paper and left to future work.

As we assume a unit-speed uniprocessor, a job Ji,j receives one unit of service at time t
iff σ(t) = Ji,j . The cumulative service of a job Ji,j received within a time interval [t1, t2),
denoted servσ(Ji,j , [t1, t2)), is given by servσ(Ji,j , [t1, t2)) , |{t | t ∈ [t1, t2) ∧ σ(t) = Ji,j }| .
We also rely on the notions of the total service received up to time t, denoted servσ(Ji,j , t) ,
servσ(Ji,j , [0, t)), and the service received by task τi in time interval [t1, t2), which is the total
service received by jobs of τi in the given interval: servτi

σ ([t1, t2)) ,
∑
j servσ(Ji,j , [t1, t2)).

Arrivals and Workload For notational clarity, we introduce the arrival sequence a(t) ,
{Ji,j | ∀i, j : ai,j = t}, which is a function mapping each time t to the (possibly empty)
set of jobs released at time t. The workload of jobs of task τi in a given time interval
[t1, t2) is the cumulative cost of all jobs of τi released in that interval: wlτi([t1, t2)) ,∑
{ci,j | ∀j : t1 ≤ ai,j < t2 }. Similarly, wl([t1, t2)) ,

∑n
i=1 wlτi([t1, t2)) is the workload of

all jobs. (We write
∑
{F (x) | ∀x : P (x)} to denote

∑
x∈{x|P (x)} F (x), for any F and P .)

Preemption Model A job Ji,j is represented by a sequence of qi,j non-preemptive segments
ci,j,k such that

∑qi,j

k=1 ci,j,k = ci,j . (In case of a fully preemptive job, each segment is simply
of length ε, the smallest discrete quantity of time.) We denote the longest segment of
job Ji,j as cmax

i,j = max{ci,j,k}1≤k≤qi,j , and correspondingly let NPS i denote the maximum
non-preemptive segment length of task τi, such that cmax

i,j ≤ NPS i for any Ji,j .
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We denote a job Ji,j ’s last segment as clast
i,j = ci,j,(qi,j). Importantly, once Ji,j has received

enough service to start clast
i,j , it cannot be preempted until it completes. We call this amount

of service the job’s run-to-completion threshold rcti,j , ci,j − clast
i,j + ε. Correspondingly, task

τi’s run-to-completion bound is a constant RCT i such that rcti,j ≤ RCT i for each Ji,j . That
is, once a job of task τi has received at least RCT i units of service, it is guaranteed to have
reached its last non-preemptive segment and thus to complete without further preemptions.

3 High-Level Overview and Abstract Foundation

We begin with a high-level overview of our approach and then introduce the foundation upon
which the analysis rests, namely the definitions and hypotheses that form the abstract RTA.

We employ one of the most commonly used tools in computer science, namely reductions.
Reductions play a central role in computer science as they allow transferring a solution for a
fundamental problem to solve another, often more concrete problem. For example, recall the
Boolean Satisfiability Problem (SAT), which asks to determine whether a given formula has
a satisfying assignment. Now if one faces another, domain-specific problem A, as long as
one has an algorithm that decides SAT (e.g., a SAT-solver) and a reduction that maps an
instance of problem A to an equivalent instance of problem SAT, one can decide problem A
by applying the reduction from A to SAT and then running a SAT-solver.

In this work, we use the conceptually same idea, but do not reduce to SAT. Rather,
we define a small abstract model, which does not have all the intricacies of a conventional
scheduling model, but which nevertheless allows us to state the problem of finding a response-
time bound. If the resulting abstract model correctly captures the essential properties
that are necessary for an RTA via the busy-window principle, then we can expect that a
response-time bound for the abstract model can be transferred to a given concrete model via
a sequence of reductions from the concrete to the abstract model.

As shown in Figure 1, the central result of this paper is the abstract RTA theorem
(Theorem 18), which solves the RTA problem for the abstract model (Section 3.1). On top
of the abstract model, we provide a sequence of model refinements along with proofs of
correctness for the corresponding reductions (in Figure 1, the refinement sequence proceeds
in reverse direction of the arrows). In particular, by assuming that tasks are sequential, it is
possible to obtain a more accurate bound on interference (Section 5). From this common
base, we then obtain general EDF and FP models (Theorems 31 and 32), which however still
abstract from specific preemption models (Section 6). Ultimately, the refinement sequence
connects the abstract model to concrete models; conversely, the reduction sequence (indicated
by the arrows in Figure 1) yields RTAs for concrete models (Section 7).

As indicated in Figure 1, we split reductions along two orthogonal concerns:
the scheduling policy — how concurrently pending jobs are sequenced; and
the preemption model — when is it possible for the scheduler to change the executing job.

Indeed, both the scheduling policy and preemption model are essentially just parameters
of the underlying abstractions. As they are independent of each other, we can construct
reductions by combining available scheduling models and preemption policies, which we have
done in this paper for all combinations of the EDF and FP scheduling policies and four
preemption models, as illustrated in Figure 1 and discussed in Section 7.

Importantly, our proof framework is flexible in the sense that one has the freedom to
expand the graph of reductions depicted in Figure 1 at any node. For instance, in future work
it will be possible to add branches for FIFO scheduling (e.g., as a sibling to Theorems 31
and 32), another preemption model (e.g., scheduling with preemption thresholds), other task
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Figure 1 Structure of the presented abstract RTA framework. Black arrows indicate reduction
steps from concrete to abstract models. For each reduction (e.g., NP-EDF RTA 7→ abstract RTA),
concrete definitions of the interface functions must be instantiated and all abstract analysis hypotheses
must be proven to hold for the specific preemption model (e.g., NP) and scheduler (e.g., EDF).

models (e.g., self-suspending tasks), or support for real-time locking protocols.

3.1 Abstract Model
At the core of the proposed framework lies the abstract model, which rests on four central
hypotheses. Intuitively speaking, we assume that the processor is not overloaded (Hypothe-
sis 7), that the scheduler is work-conserving (Hypothesis 8), that worst-case interference is
bounded (Hypothesis 10), and that a solution to the response-time recurrence is known (Hy-
pothesis 13). We define these assumptions precisely in Sections 3.4, 3.5, and 3.7 below.

I Definition 1. An abstract model is a tuple (τi, Iσ,Wσ, IBF i), where τi is the task under
analysis, Iσ is the (abstract) interference function, Wσ is the (abstract) interfering workload
function, IBF i is the interference-bound function, and where Iσ, Wσ, and IBF i satisfy the
requirements imposed in Hypotheses 7, 8, 10, and 13.

The three functions describe the evolution of an (abstract) system and thereby form the
interface of abstract RTA. Specifically, reducing a concrete model to the abstract model
means (i) instantiating Iσ, Wσ, and IBF i such that they capture the concrete model’s
semantics, and (ii) proving that the chosen definitions satisfy Hypotheses 7, 8, 10, and 13.

Given an abstract model (τi, Iσ,Wσ, IBF i), the problem of bounding the worst-case
response time of τi is defined as follows.

I Definition 2 (abstract RTA problem). Given a constant R, decide whether the inequality
fi,j − ai,j ≤ R holds for every job Ji,j of task τi, for any arrival sequence a(t) and schedule
σ(t) consistent with (τi, Iσ,Wσ, IBF i) in the sense of Hypotheses 7, 8, 10, and 13.

We emphasize that we place no restrictions on a(t) and σ(t) other than the (arguably quite
weak) restrictions imposed by the task model and Hypotheses 7, 8, 10, and 13. In particular,
note that Definitions 1 and 2 are silent on matters of scheduling policy, preemption model,
task-model specifics, etc., which are all abstracted by the interface functions, as discussed next.
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3.2 Abstract Interference
A job’s execution may be postponed by the environment and/or the system due to many
different factors such as preemption by higher-priority jobs, non-preemptive lower-priority
jobs, jitter, black-out periods in hierarchical scheduling, etc. We collectively refer to any
such delay as (abstract) interference. In particular, we consider the execution of other jobs of
the same task, frequently called self-interference in prior work, to also constitute interference.

Formally speaking, interference is a function Iσ : J×T→ B that satisfies Hypotheses 7, 8,
10, and 13. Intuitively, Iσ is a predicate that determines, in the context of a given schedule
σ, for any job Ji,j and any time t, whether Ji,j could execute at time t if it were pending
at time t. Note that a job does not have to be actually pending to experience (abstract)
interference. This seemingly unnatural definition will turn out to be useful when bounding the
response time of jobs that arrive after the beginning of a busy window (Hypothesis 10). To
illustrate the idea, we provide a simple example; further examples can be found in Section 7.

I Example 3. For a fully preemptive JLFP model assuming Liu & Layland [30] tasks (i.e.,
no self-suspensions or shared resources), Iσ can be defined as follows:

Iσ(Ji,j , t) , ∃ Jh,k : Jh,k 6= Ji,j ∧ σ(t) = Jh,k ∧ Jh,k � Ji,j .

That is, interference occurs if another job with higher or equal priority is scheduled. See
Figure 2 for an illustration. In Section 7, we later provide a similar instantiation that also
works in the presence of non-preemptive sections.

In general, conceptually similar interference functions can be defined for many schedulers
and workload models, but finding the most appropriate definition can require some ingenuity
in case of complex workloads or intricate scheduling policies.

Building on the interference function Iσ, we define the cumulative interference CI of a
job Ji,j within a time interval [t1, t2) as CI(Ji,j , [t1, t2)) ,

∑t2−1
t=t1 [[Iσ(Ji,j , t)]]1, where [[x]]1

denotes the indicator function that evaluates to 1 if x is true, and 0 otherwise.

3.3 Abstract Interfering Workload
The second function of the abstract interface, called interfering workload Wσ, is of a more
technical nature and is intended to describe the potential for future interference, in the sense
that it allows “foreseeing” (in the context of a fixed schedule σ) the amount of interference
that a job can incur in the future. For example, the release of a higher-priority job with cost
ci,j means that a lower-priority job may subsequently suffer ci,j units of interference.

Formally, the interfering workloadWσ : J×T→ N is a function that satisfies Hypotheses 7,
8, 10, and 13. Intuitively, it is useful to think of the function as indicating, for any job Ji,j
and any time t, the amount of potential interference for job Ji,j that is introduced into the
system at time t in a given schedule σ. This idea will become clearer with an example.

I Example 4. Continuing Example 3, an appropriate interfering workload function for a
fully preemptive JLFP scheduling model is given by

Wσ(Ji,j , t) ,
∑
{ch,k | ∀Jh,k ∈ a(t) \ {Ji,j} : Jh,k � Ji,j } .

That is, the interfering workload introduced at time t is simply the total cost of all higher-
or equal-priority jobs released at t (excluding job Ji,j itself). See Figure 2 for an illustration.

While Wσ may appear to be a somewhat unfamiliar concept on first sight, its essential role
will become fully apparent next with the introduction of a general notion of “busy window.”

Analogously to cumulative interference, we define the cumulative interfering workload
CW of a job Ji,j within a time interval [t1, t2) as the aggregation of Wσ across said interval.
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Figure 2 Illustration of an abstract busy window. Let J, Jhp1 , Jhp2 be arbitrary jobs such
that Jhp2 � Jhp1 � J . The dashed red curve shows CW(J, [0, t)), and the solid blue curve shows
CI(J, [0, t)), with Iσ andWσ defined as in Examples 3 and 4. Intuitively, the difference CW(J, [0, t))−
CI(J, [0, t)) expresses the amount of “pending” interference that can defer the execution of job J .

3.4 Abstract Busy Window
As motivated in Section 1, the ultimate goal of this paper is to establish a general and reusable
formal foundation for the busy-window principle, which necessarily requires a general and
precise definition of the concept of a “busy window” (or, interchangeably, “busy interval”).
While it is (deceptively) easy to state the intuitive idea of a busy window—the processor is
continuously “busy” executing a job under analysis or some interfering workload—and while
it is also usually not too difficult to define this idea for a given specific model, coming up
with a good definition in the general case is another matter entirely.

In fact, this challenge is the motivation behind the choice of abstract interface functions
Iσ and Wσ. Using these two functions, we can define a single, general notion of a “busy
interval” that is independent of any specific model, and which thus can capture the essence
of the busy-window idea even across very different scheduler and workload models.

The key insight is that the workload function Wσ produces interfering workload, while
the interference function Iσ consumes such workload. Thus, when CW equals CI , there is
no more interfering workload to process, so the processor necessarily becomes “quiet” and
the corresponding busy interval ends. This observation leads us to the following definition.

I Definition 5 (quiet time). A point in time t is a quiet time w.r.t. a job Ji,j if

CI(Ji,j , [0, t)) = CW(Ji,j , [0, t)) ∧ (t ≤ ai,j ∨ fi,j ≤ t).

In other words, at a quiet time t, we require the cumulative interference up to time t to be
equal to the cumulative interfering workload, which indicates that the potential interference
seen so far has been fully “consumed” (i.e., no more higher-priority work or other kinds of
delay are pending). Furthermore, to ensure that a job Ji,j ’s busy interval (defined next)
actually captures its execution, we require that Ji,j cannot both be pending before the quiet
time t and also at time t (i.e., ¬(ai,j < t ∧ t < fi,j)⇔ t ≤ ai,j ∨ fi,j ≤ t). Thus:

I Definition 6 (busy interval). An interval [t1, t2) is a busy interval w.r.t. job Ji,j if (i) ai,j ∈
[t1, t2), (ii) t1 is a quiet time (iii) t2 is a quiet time, and (iv) no t ∈ (t1, t2) is a quiet time.

In other words, we say that a given interval is a job’s busy interval if the interval contains
the arrival of the job, starts with a quiet time, and remains non-quiet until it ends with a
quiet time. Figure 2 illustrates the busy-window concept for a fully preemptive JLFP model.

Note that it follows from Definition 6 that a job’s busy window, if it exists, is unique
(which we formally establish in our Coq proof). It also bears repeating that Definition 6
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applies to a specific job as this simplifies the formal Coq development, whereas prior work
traditionally defines the notion of a busy window w.r.t. a task or priority level [29].

With the abstract notion of a busy interval in place, we can finally state our first
two hypotheses, which constrain Iσ and Wσ via Definitions 5 and 6. First, obviously a
response-time bound can exist only if busy windows are of finite length.

I Hypothesis 7. Busy intervals are bounded by a constant L: for any Ji,j , there is a busy
interval [t1, t2) w.r.t. Ji,j and t2 − t1 < L.

Clearly, busy intervals are not actually always bounded; for example, if the processor is
overloaded. However, no response-time analysis is applicable to workloads that exhibit
unbounded busy intervals. Hypothesis 7 thus must be checked and proven to be satisfied in
order for abstract RTA to be applicable. In fact, this hypothesis is analogous to the common
requirement that a task set’s total utilization cannot exceed 100%. However, Hypothesis 7 is
more general since it reflects also any other abstract interference factors modeled by Iσ.

Next, we require “work conservation” in an abstract sense.

I Hypothesis 8. The scheduler is work-conserving in the abstract sense: for any job Ji,j ,
its busy interval [t1, t2), and any point in time t ∈ [t1, t2), Ji,j incurs interference at time t
iff Ji,j is not scheduled at time t: Iσ(Ji,j , t) ⇐⇒ σ(t) 6= Ji,j .

Intuitively, Hypothesis 8 requires the abstract interference predicate to describe the inter-
ference “correctly”—the scheduler must either schedule Ji,j , or there is something else that
interferes with Ji,j , which matches the intuitive understanding of “work conservation.” Note
that we consider only time instants within a busy interval; we can thus be sure that there is
some pending interference in the system (otherwise t would be a quiet time).

However, it is also interesting to note that Hypothesis 8 does not state whether the
processor idles at time t (i.e., σ(t) = ⊥ is permissible under Hypothesis 8 if Iσ(Ji,j , t)
holds), which is necessary for generality: otherwise, abstract RTA would not be applicable to
workload models with self-suspensions, release jitter, or delayed budget replenishments.

3.5 Abstract Interference Bound Function
The interference-bound function IBF i : T × T → T is the third and last element of the
behavioral interface of our analysis. The notion of an IBF as a bound on interference during
some interval is well-known from prior work on the analysis of specific schedulers. However,
to obtain the generality needed for abstract RTA, our definition differs from prior work in
that it explicitly considers the relative offset of the job under analysis within its busy interval.

I Definition 9. Given a job Ji,j and its busy interval [t1, t2), we call A , ai,j − t1 the offset
(or relative arrival time) of job Ji,j w.r.t. the beginning of the busy interval t1.

Based on this notion, abstract RTA requires the existence of a function IBF i(A, ∆) that
yields a bound on the maximum interference incurred by any job Ji,j of task τi during an
interval of length ∆ starting with Ji,j ’s busy window assuming Ji,j has a relative offset A.

I Hypothesis 10. Given any job Ji,j of a task τi and a schedule σ, Ji,j ’s busy interval
[t1, t2) in σ, and a subinterval [t1, t1 + ∆) ⊆ [t1, t2), IBF i(ai,j− t1, ∆) bounds the cumulative
interference incurred by Ji,j during [t1, t1 + ∆): CI(Ji,j , [t1, t1 + ∆)) ≤ IBF i(ai,j − t1, ∆).

Note that IBF i bounds the total interference within an interval starting at time t1
regardless of the job’s arrival time. That is, the interval starts from the beginning of the
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job’s busy interval, and not from its arrival time. The reason to add the job’s relative offset
as a parameter of IBF i is that it extends the set of possible interference bounds, which is
important when analyzing EDF scheduling, where a job’s priority depends on its arrival time.
To illustrate the idea, consider the following example assuming FP scheduling, where we
write τh � τi to indicate that task τh has priority no lower than task τi.

I Example 11. For a fully preemptive FP model, IBF i can be defined as follows:

IBF i(A,∆) ,
(∑

{RBFh(∆) | ∀τh : τh � τi }
)
−X,

where X = Ci if ∆ > A, and X = 0 otherwise. The term X is subtracted to exclude the
cost of the job under analysis itself. Note that IBF i considers as interference even jobs of
task τi that arrive later than A time units after the beginning of a busy interval (i.e., after
the job under analysis arrives). While this is required in the most general case (e.g., for
non-sequential tasks models), it is overly pessimistic in the context of sequential tasks. In
Section 5, we define a refined model for sequential tasks to eliminate this pessimism.

To clarify, both Wσ and IBF i bound the interference of a given job. However, Wσ is
primarily a modeling construct (for defining abstract busy windows) that yields a bound
depending on a specific job arrival sequence and schedule σ, whereas IBF i is an analysis tool
that bounds interference in any schedule σ (compliant with the task model).

3.6 Abstract Response-Time Bound
Using IBF i, we can proceed to state the actual response-time bound. Consider a job Ji,j
that arrives A time units after the beginning of its busy window [t1, t2). Following a line
of reasoning similar to those given by Davis et al. [11] and Yao et al. [45], we use the fact
that once Ji,j receives rcti,j ≤ RCT i units of service, it becomes non-preemptive and runs to
completion, requiring no more than clast

i,j − ε ≤ Ci − RCT i additional units of service. The
central question thus is: by when will Ji,j receive RCT i units of service at the latest?

By Hypothesis 8, Ji,j receives service whenever it does not incur interference. Thus, if we
find some F ≥ 0 such that A+F = RCT i + IBF i(A, A+F ), then we can conclude that Ji,j
has received at least RCT i units of service by time t1 +A+ F (or has already completed),
and thus will complete no later than by time t1 + A + F + (Ci − RCT i). Since fi,j ≤
t1 +A+F + (Ci−RCT i), and by assumption ai,j = t1 +A, we have ri,j ≤ F + (Ci−RCT i).

However, since Ji,j ’s relative arrival time A is unknown in general, this inequality does
not immediately yield a useful bound. Nonetheless, as a first step, we observe that the
solution F that is maximal for all A ∈ T implies a response-time bound. More precisely, a
constant R is a response-time bound for τi, if for each A ∈ T there exists an F such that

A+ F = RCT i + IBF i(A, A+ F ) and F + (Ci − RCT i) ≤ R. (1)

3.7 Finite Search Space
Equation (1) has no bound on the set of possible offsets (i.e., A ∈ T), thus while being
correct, it is not practical in the sense that it cannot be used to actually compute such an
R as that would require enumerating all A ∈ T. Therefore, to obtain a foundation for a
practical analysis, we must restrict Equation (1) to a finite search space. In this section, we
focus on the high-level idea underlying the abstract search space, and defer the proof that
supports this reasoning to Section 4.2.
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First, given Hypothesis 7, it is easy to see that no job of task τi has a relative arrival time
A ≥ L as there is no busy interval longer than L. However, simply limiting the maximum
magnitude of A is insufficient since L can be very large (i.e., enumerating every A < L is
impractical, given billions of processor cycles per second).

To obtain a sparse search space, it is useful to note that in Equation (1) IBF i is the only
varying term dependent on A. The function IBF i in turn depends on only two parameters,
A and ∆. We can thus ignore any relative offset A for which IBF i “does not change.”
Conversely, and more precisely, we say that an offset A > 0 is in the search space if the
partially applied function IBFi(A− ε, ·) is not equivalent to the partially applied function
IBF i(A, ·), that is, if there exists a ∆ < L such that IBF i(A− ε,∆) 6= IBF i(A,∆).

Finally, as a base case, we always include A = 0, which yields the following search space.

I Definition 12. The search space of task τi is given by

Ai , {0} ∪
(⋃
{A | 0 < A < L ∧ ∃∆, IBF i(A− ε, ∆) 6= IBF i(A, ∆)}

)
.

This leads us to the final hypothesis upon which abstract RTA rests, namely the assumption
that a bound R satisfying Equation (1) is known for all relevant offsets (i.e., for any A ∈ Ai).

I Hypothesis 13. There exists a constant R such that ∀A ∈ Ai,∃F,

A+ F = RCT i + IBF i(A, A+ F ) and F + (Ci − RCT i) ≤ R. (2)

In more traditional terms, we assume that R is an upper bound on the fixed point of the
response-time recurrence for each “relevant” release offset A. Note that we intentionally do
not specify how such a constant R is obtained (i.e., by classic fixed-point iteration, exhaustive
search, querying some oracle such as a linear-program solver, or by any other means). To
establish that abstract RTA is sound (i.e., to show that R is indeed a response-time bound),
it is sufficient to know that R bounds each fixed point, regardless of how it was found.

4 Abstract Response-Time Analysis

In this section, we present key proofs that are essential to understanding our analysis. The
core of the analysis consists of three theorems: Theorem 15 relates the service received by a
job and an interference bound, Theorem 17 proves the reduced search space to be sufficient,
and finally Theorem 18 joins the prior two theorems to obtain the abstract response-time
bound. The proofs in this section rely solely on Hypotheses 7, 8, 10, and 13 and the
definitions in Section 2 (i.e., no additional implicit assumptions are made, which is verified
by our Coq proof).

4.1 Service Theorem
Consider an arbitrary job Ji,j and its busy interval [t1, t2). We begin by observing that,
within any time interval [t, t+ ∆) ⊆ [t1, t2), the sum of the cumulative service received by
Ji,j and the cumulative interference experienced by Ji,j equals ∆.

I Lemma 14. In any time interval [t, t+ ∆) ⊆ [t1, t2):

servσ(Ji,j , [t, t+ ∆)) + CI(Ji,j , [t, t+ ∆)) = ∆.

Proof. At any instant t ∈ [t, t+ ∆), Ji,j either receives a unit of service or incurs one unit
of interference (but not both) since the scheduler is work-conserving (Hypothesis 8). From
the definitions of cumulative service (Section 2) and cumulative interference (Section 3.2), it
follows that the left-hand side is a sum of ∆ terms equal to one, with the rest being zero. J
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Next, note that the service received by Ji,j outside its busy interval [t1, t2) is equal to
zero (which follows from the definition of busy interval), and that a job must be completed
by the end of its busy interval. Thus, Ji,j receives ci,j units of service during [t1, t2), which
implies that, for every ρ ∈ [0, ci,j ], there exists a ∆ such that servσ(Ji,j , [t1, t1 + ∆)) = ρ.

Put differently, a bound of the form ρ ≤ servσ(Ji,j , [t1, t1 + ∆)) states that Ji,j has
received at least ρ units of service by time t1 + ∆. The main service theorem, which we
establish next, serves to relate such a lower bound on cumulative service to the cumulative
interference incurred by Ji,j so far. More precisely, if the sum of ρ and the cumulative
interference experienced by Ji,j within the interval [t1, t1 + ∆) does not exceed ∆, then it
follows that Ji,j has indeed received at least ρ units of service by time t1 + ∆.

I Theorem 15. For any ρ ∈ [0, ci,j ] and ∆, if ρ+ CI(Ji,j , [t1, t1 + ∆)) ≤ ∆, then

ρ ≤ servσ(Ji,j , [t1, t1 + ∆)).

Proof. By Lemma 14, ∆ = servσ(Ji,j , [t1, t1 + ∆)) + CI(Ji,j , [t1, t1 + ∆)), and from the
premise we have ρ+ CI(Ji,j , [t1, t1 + ∆)) ≤ ∆, which implies ρ ≤ servσ(Ji,j , [t1, t1 + ∆)). J

This simple but important fact shows that we automatically gain a lower bound on the
total amount of service received by a job whenever we upper-bound the cumulative abstract
interference that it has incurred. Theorem 15 will be the main tool for proving the abstract
RTA theorem (Theorem 18).

4.2 Reduction of the Search Space
As discussed in Section 3.7, the notion of an explicit search space serves to shrink the set of
equations that must be solved to obtain a safe response-time bound for a task. While we
have already stated and intuitively explained the search space in Section 3.7, we now provide
a more rigorous argument.

Our method to justify the reduced search space differs from the approaches employed in
prior papers, which pursue roughly the following argument: in certain situations, it is possible
to transform a schedule σ into an equivalent schedule σ′, where the job under analysis arrives
one time unit earlier (i.e., a′i,j = ai,j − ε), so that it is sufficient to consider only σ′. That is,
one can “move” the arrival of a critical job “to the left” until a schedule belonging to the
search space is found. However, while this sketch is intuitively appealing, it is difficult to find
a simple argument for why the schedule transformation is correct even for specific models, let
alone in the abstract general case. Our approach instead automates the reduction procedure
based on a more rigorous (but less visual) argument.

Consider two offsets A1 and A2: we say that IBF i is equivalent on these offsets if
IBF i(A1,∆) = IBF i(A2,∆) for any ∆ < L, which we denote as IBF i(A1, ·) ≡ IBF i(A2, ·).

In the following, we prove that, if IBF i(A1, ·) ≡ IBF i(A2, ·), then there is no point
in keeping both A1 and A2 in the search space. To this end, we show how to transform
the equation A1 + F1 = RCT + IBF i(A1, A1 + F1) into the equation A2 + F2 = RCT i +
IBF i(A2, A2 + F2) such that the solution F1 can be easily computed from the solution F2.

First, we show that, for any offset A, there is an offset As in the search space Ai such
that IBF i is equivalent on A and As.

I Lemma 16. For any A < L, ∃As ∈ Ai such that As ≤ A and IBF i(As, ·) ≡ IBF i(A, ·).

Proof. By induction on A. The base case A = 0 is trivial since 0 is in the search space.
Induction step: given that the property holds for A, we need to prove the claim for A+ ε.

Consider two cases.
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Case 1: IBF i(A, ·) ≡ IBF i(A+ ε, ·). By the induction hypothesis, there is an As ∈ Ai
such that As ≤ A < A+ ε. Moreover, we have IBF i(As, ·) ≡ IBF i(A, ·) ≡ IBF i(A+ ε, ·) by
transitivity. Hence As satisfies the claim also for A+ ε.

Case 2: IBF i(A, ·) 6≡ IBF i(A + ε, ·). In this case, A + ε is in the search space itself,
because the fact that IBF i is not equivalent on A and A + ε implies that there exists a
∆ < L such that IBF i((A + ε) − ε,∆) 6= IBF i(A + ε,∆), which matches the criterion for
inclusion in the search space. J

However, since the second parameter of IBF i(A,A+ F ) in Equation (2) also depends on
A, Lemma 16 by itself does not yet allow us to substitute any arbitrary offset with an offset
from the search space. Rather, we also need to transform the solution F . The following
theorem justifies the replacement.

I Theorem 17. Let As ∈ Ai and let Fs be the corresponding solution such that As +Fs < L

and As + Fs = RCT i + IBF i(As, As + Fs). Then, for any offset A ∈ [As, As + Fs] such that
IBF i(As, ·) ≡ IBF i(A, ·), there exists a solution F such that the following conditions are
met: (i) As + Fs = A+ F , (ii) F ≤ Fs, and (iii) A+ F = RCT i + IBF i(A,A+ F ).

Proof. It is easy to verify that for F , As + Fs −A the conclusion of the theorem holds.
(i) The equality As + Fs = A+ F trivially holds.
(ii) From (i), by moving the term As to the right-hand side, we obtain Fs = F + (A−As).

Since (A−As) ≥ 0, we have F ≤ Fs.
(iii) By assumption, As + Fs = RCT i + IBF i(As, As + Fs) and IBF i(As, ·) ≡ IBF i(A, ·).

Substitute IBF i(As, ·) in the former to obtain As + Fs = RCT i + IBF i(A,As + Fs).
Finally, we rewrite both sides using (i) to obtain A+ F = RCT i + IBF i(A,A+ F ).

J

With Theorem 17 in place, we can obtain a result for any offset by (instead) analyzing
an offset from the search space, which justifies the restriction to A ∈ Ai in Hypothesis 13.

4.3 Abstract RTA
In this section, the main proof is presented: using Theorems 15 and 17, we obtain that the
constant R given in Hypothesis 13 is in fact a response-time bound for task τi.

The high-level idea of the proof is as follows. For an arbitrary job of task τi and its busy
interval, we calculate the relative arrival time A. This offset is not necessarily in the search
space, and therefore there is no direct access to the solution of the response-time recurrence
with offset A. However, by Theorem 17, there is an equivalent solution of the recurrence for
an offset included in the search space. We can use this solution to obtain an upper bound on
interfering workload and use this bound to satisfy the premise of Theorem 15. In order to
prove the theorem, we rely on all previously stated hypotheses.

I Theorem 18 (Abstract RTA). Under the assumptions stated in Hypotheses 7, 8, 10, and 13,
the response-time of task τi is bounded by R.

We prove the theorem in the remainder of this section by case analysis in Lemmas 19–21.
Let Ji,j denote an arbitrary job of task τi. We must show that job Ji,j is complete by time
ai,j +R (or, equivalently, that fi,j ≤ ai,j +R). By Hypothesis 7, there exists a finite busy
interval [t1, t2) of job Ji,j : let A = ai,j − t1 be the relative arrival time of job Ji,j w.r.t.
[t1, t2). Further, as a zero-cost job trivially has a response time of zero, assume ci,j > 0.

The goal is to apply Theorem 15 to obtain the time when Ji,j receives sufficient service
to become non-preemptive and run to completion, that is, we seek a ∆ such that rcti,j ≤
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RCT i ≤ servσ(Ji,j , [t1, t1 + ∆)). From Hypothesis 13, we can obtain the required bound on
cumulative interference needed to satisfy the premise of Theorem 15 (as argued below).

Unfortunately, offset A does not necessarily belong to the search space; thus one cannot
apply Hypothesis 13 directly. However, from Theorem 17 we know that, for any offset A,
there exists another offset As ∈ Ai with an equivalent function IBF i and solution Fs of the
corresponding equation As + Fs = RCT i + IBF i(As, As + Fs).

Depending on the value of As + Fs, consider the following cases: (1) t2 ≤ t1 +As + Fs;
(2) t1 +As +Fs < t2 and A ≤ As +Fs; and (3) t1 +As +Fs < t2 and A > As +Fs. Clearly,
these three cases cover all possibilities.

Case 1 In the first case, the solution As + Fs of the response-time recurrence is larger than
the length of the busy interval.

I Lemma 19. If t2 ≤ t1 +As + Fs, then fi,j ≤ ai,j +R.

Proof. We show that fi,j ≤ t2 ≤ ai,j + R. The first inequality fi,j ≤ t2 is a corollary of
the definition of a busy interval (Definition 6). Time t2 is a quiet time, and job Ji,j arrives
before t2. Thus, by the definition of a quiet time (Definition 5), job Ji,j is complete by time t2.
To prove the second inequality t2 ≤ ai,j + R, consider the following chain of inequalities:
t2 ≤ t1 +As + Fs ≤ t1 +A+ Fs ≤ ai,j + Fs ≤ ai,j + Fs + (Ci − RCT i) ≤ ai,j +R. J

Case 2 Next, consider the case where the fixed point As + Fs lies inside the busy interval,
which is the theorem’s main case.

Some additional reasoning is required since the term Ci − RCT i does not necessarily
bound the term ci,j − rcti,j . That is, a job can have a small run-to-completion threshold
rcti,j , thereby becoming non-preemptive much earlier than guaranteed according to RCT i,
while simultaneously executing a final non-preemptive segment that is longer than RCT i

(e.g., this is possible in the case of floating non-preemptive sections). In this case, we cannot
directly apply Theorem 15, because the response-time recurrence gives a “weak” bound on
workload with ρ = RCT i, whereas we need ρ = rcti,j in this case.

Intuitively, however, this is a good situation: if a job has a longer final non-preemptive
segment, it necessarily also has a shorter maximum preemptive part (since ci,j ≤ Ci).
Observing that such a job will become non-preemptive earlier, the response time of the job
will not be worse than the response time of a job with a shorter last segment. To formally
express this reasoning, we introduce a notion of optimism µ , RCT i − rcti,j .

I Lemma 20. If t1 +As + Fs < t2 and A ≤ As + Fs, then fi,j ≤ ai,j +R.

Proof. We show that Ji,j will complete by time ai,j +R by deriving that it completes by
time instant t1 + (A+ F − µ) + (ci,j − rcti,j), where t1 + (A+ F − µ) is the point in time
by which Ji,j receives rcti,j units of service, and ci,j − rcti,j is the duration of Ji,j ’s last
non-preemptive segment.

Due to space constraints, we omit the step-by-step proof of the inequality t1 + (A+ F −
µ) + (ci,j − rcti,j) ≤ ai,j +R, but note that we have verified this fact in our Coq proof.

We apply Theorem 15 with ρ = rcti,j and ∆ = A + F − µ. It then remains to be
shown that rcti,j + CI(Ji,j , [t1, t1 +A+ F − µ)) ≤ A+ F − µ, which trivially follows since
rcti,j + CI(Ji,j , [t1, t1 +A+ F − µ)) ≤ RCT i + IBF i(A,A+ F )− µ. Thus we know that job
Ji,j receives at least rcti,j units of service by time t1 +A+ F − µ, which implies that Ji,j
completes by time t1 + (A+ F − µ) + (ci,j − rcti,j) ≤ ai,j +R. J
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Case 3 The final case can never arise and thus can be discarded from further consideration.

I Lemma 21. The case t1 +As + Fs < t2 and A > As + Fs is impossible.

Proof. By contradiction. Suppose the converse is true. From the equation As + Fs =
RCT i+ IBF i(As, As+Fs), it follows that rcti,j +CI(Ji,j , [t1, t1 +As+Fs)) ≤ As+Fs. Thus,
we can apply Theorem 15 with parameters ρ = rcti,j and ∆ = As + Fs. By Theorem 15, Ji,j
receives at least rcti,j units of service by time t1 +As + Fs, where 0 < ε ≤ rcti,j . However,
this is impossible since Ji,j arrives after time t1 +As + Fs, and Ji,j cannot receive service
(i.e., be scheduled) before it arrives. J

Lemmas 19–21 cover all cases, and in each possible case job Ji,j completes by time ai,j+R.
Thus Theorem 18 holds.

5 Abstract Sequential Response-Time Analysis

In the analysis of uniprocessor systems, it is usually assumed that tasks are sequential, that
is, jobs of the same task execute in order of their arrival. This assumption allows for tighter
analyses because it allows for a better bound on self-interference (i.e., the case when a job
is, possibly indirectly, delayed by other jobs of the same task). In this section, we consider
such an extension (i.e., refinement) of the underlying abstract RTA, and to this end formally
introduce the sequential-tasks assumption.

I Hypothesis 22. In schedule σ, tasks are sequential: for any task τi and any two jobs Ji,j
and Ji,k of task τi, if ai,j < ai,k, then ∀t, σ(t) = Ji,k =⇒ fi,j ≤ t.

Assuming that tasks are sequential prevents a later-arriving job from interfering with an
earlier job. This allows us to refine the interference bound function by isolating and removing
the term that represents the self-interference contribution.

To support this property, in addition to Hypothesis 22, we require a technical condition
to ensure that Iσ and Wσ are consistent with the sequential-tasks hypothesis (i.e., to rule
out nonsensical definitions of Iσ and Wσ). Specifically, Hypothesis 22 can theoretically
contradict the priority policy, which is implicitly encoded by the two functions, through
the following effect. Suppose there are two jobs Ji,j and Ji,k of task τi that are pending
simultaneously and ai,j < ai,k. By Hypothesis 22, Ji,j must execute before Ji,k. However,
since we have a completely generic, abstract model, nothing stops a (pathological) priority
policy from assigning a higher priority to the second job (i.e., Ji,k � Ji,j) so that Ji,k must
execute before Ji,j . To prevent such a contradiction, we impose an additional restriction on
the interference function Iσ and the interfering workload function Wσ.

I Hypothesis 23. Functions Iσ and Wσ are consistent with Hypothesis 22: for any job Ji,j
of task τi and its busy interval [t1, t2), the total workload of the task up to time t1 is equal to
the total service received by the task up to time t1. Formally, wlτi([0, t1)) = servτi

σ ([0, t1)).

To understand the intuition behind Hypothesis 23, recall that a busy interval is defined in
terms of Iσ and Wσ (Definition 6). Thus, at the start of a job’s busy interval, there should
be no pending interference from other jobs of the same task. In other words, if upon arrival
of a job Ji,j there is already another pending job Ji,k of the same task, then the busy interval
of Ji,j must extend to the arrival of job Ji,k.

Given Hypotheses 22 and 23, we can refine the response-time equation from Hypothesis 13
by pulling out the bound on self-interference from IBF i. To this end and analogously to
IBF i, we let IBFother

i denote a bound on any interference incurred by a job Ji,j excluding
any self-interference, and require that it satisfies the following invariant.
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I Hypothesis 24. Given any job Ji,j of a task τi and a schedule σ, Ji,j ’s busy interval
[t1, t2) in σ, and a subinterval [t1, t1 + ∆) ⊆ [t1, t2), IBFother

i (ai,j − t1, ∆) bounds the
cumulative interference incurred by Ji,j during [t1, t1 + ∆) excluding any self-interference:
CI(Ji,j , [t1, t1 + ∆))− (servτi

σ ([t1, t1 + ∆))− servσ(Ji,j , [t1, t1 + ∆))) ≤ IBFother
i (ai,j − t1, ∆).

Using the new notion, we can refine IBF i from Example 11 as follows.

I Example 25. An appropriate IBFother
i function for a fully preemptive FP model with

sequential tasks is given by

IBFother
i (A,∆) ,

∑
{RBFh(∆) | ∀τh : τh 6= τi, τh � τi } .

Compared to IBF i in Example 11, IBFother
i explicitly excludes any contributions due to jobs

of τi to discount any self-interference, which makes it less pessimistic for sequential tasks.

Recall from Section 2 that the system model assumes an arrival curve αi to upper-bound
the maximum number of activations of task τi, and that τi’s request-bound function RBF i

is defined in terms of αi. We use this information and Hypotheses 22–24 to upper-bound the
maximum self-interference, and once we know the maximum self-interference, there is no
need to include this term in the abstract function IBFother

i . We state this fact as follows.

I Lemma 26. Under Hypotheses 22–24, for any A and ∆:

IBF i(A, ∆) ≤ RBF i(A+ ε)− Ci + IBFother
i (A, ∆).

Proof. Consider a job Ji,j of task τi and its busy interval [t1, t2), and let A = ai,j − t1
denote Ji,j ’s relative offset. By Hypothesis 23, all jobs of task τi that arrived prior to time t1
are complete by t1. By Hypothesis 22, (i) all jobs of task τi that arrive during [t1, t1 +A)
will interfere with Ji,j , (ii) jobs that arrive at time ai,j = t1 +A (simultaneously with Ji,j)
may interfere with Ji,j , and (iii) none of the jobs of task τi that arrive after time ai,j can
interfere with Ji,j . Therefore, we must consider only jobs of τi that arrive during the interval
[t1, t1 +A] of length A+ ε. According to the system model (Section 2), these jobs execute
for no more than RBF i(A+ ε) time units in total. Furthermore, we can subtract τi’s cost
Ci once since Ji,j itself is one of the jobs accounted for by RBF i(A+ ε). The final inequality
thus follows from Hypothesis 24. J

Lemma 26 implies that we can bound the term IBF i(A,A+F ) in Hypothesis 13 with the
refined term RBF i(A+ ε)− Ci + IBFother

i (A,A+ F ), which yields the following theorem.

I Theorem 27. Under the assumptions stated in Hypotheses 7, 8, and 22–24, if there exists
a constant R such that ∀A ∈ Ai,∃F,

A+ F = RCT i + (RBF i(A+ ε)− Ci) + IBFother
i (A, A+ F ) and

F + (Ci − RCT i) ≤ R,

then the response-time of task τi is bounded by R.

Proof. The claim follows from Theorem 18: the set of hypotheses remains mostly the same,
with the only difference being that Hypotheses 10 and 13 have been refined with more specific
assumptions. However, by Lemma 26, the refined bound RBF i(A+ε)−Ci+IBFother

i (A,A+F )
safely upper-bounds IBF i(A,A+ F ); abstract RTA thus applies. J

With Theorem 27 in place, we next clarify when preemptions can take place.
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6 Preemption Model

Recall from Section 2 that any job Ji,j can be represented as a sequence of qi,j segments
during which the job executes non-preemptively. Under a discrete-time model as assumed
herein, this is true even if Ji,j is fully preemptive since, as a degenerate case, such a job can
be seen as consisting of ci,j single-quantum segments (i.e., each of length ε).

Any non-preemptive segment starts with a corresponding preemption point, that is, a job
can be preempted only in between segments. Accordingly, a preemption model is a policy
that governs the placement of preemption points. Until now, we did not touch upon this
aspect, because abstract RTA does not depend on any particular preemption model. Or
rather, the specifics of the preemption model in use have been abstracted by the notion of
RCT . However, to instantiate the analysis for specific schedulers and workloads, we need to
specify an exact rule that determines when a job can be preempted.

To allow for a wide range of possible preemption models while retaining the ability to
reason about preemptions in a high-level, general way, we use the notion of a preemption
predicate ψ : J× S→ B as a generic interface that abstracts from a job’s specific structure
and preemption points. More precisely, given any job Ji,j and its progress ρ ∈ [0, ci,j ] (i.e.,
an amount of service received so far), predicate ψ(Ji,j , ρ) holds iff Ji,j can be preempted
at this point of its execution (i.e., after receiving exactly ρ units of service). We provide
instantiations of ψ for concrete models in Appendix B. Interestingly, while one can think of
a limited-preemptive model as a generalization (or super-model) of the other preemption
models [7, 45], we found it actually easier to ignore this hierarchy in our proof. We thus
instantiate ψ directly for each preemption model.

Since a preemption model restricts when a scheduler can enact changes to the schedule,
we next relate the preemption predicate to a schedule σ and its underlying priority policy �.

I Definition 28. A schedule σ is preemption-model compliant if, for any job Ji,j and
time t, (i) ψ(Ji,j , servσ(Ji,j , t)) ∧ σ(t) = Ji,j implies that Ji,j has the maximal priority
among all pending jobs and (ii) jobs can be non-preemptive only while they are executing:
σ(t) 6= Ji,j =⇒ ψ(Ji,j , servσ(Ji,j , t)).

In other words, all non-executing jobs are preemptable and the priority policy is respected
whenever the scheduled job is preemptable, which in turn implies that jobs are preemptable
at the moment of a context switch (i.e., whenever they start or stop executing).

6.1 Priority Inversion
While a job Jl,k is executing a non-preemptive segment, there may be a pending higher-
priority job Ji,j waiting to be scheduled at Jl,k’s next preemption point, which is commonly
known as priority inversion. To reason about the total duration of priority inversion that Ji,j
incurs, we first define a weaker predicate lps(Ji,j , t) that is true whenever a lower-priority
job Jl,k is scheduled, regardless of whether Ji,j is actually pending at time t.

lps(Ji,j , t) , ∃Jl,k, σ(t) = Jl,k ∧ Ji,j � Jl,k (3)

Intuitively, it may seem somewhat unnatural to ignore whether Ji,j is pending at time t.
However, the definition turns out to be convenient because it captures cases where a priority
inversion at the start of a busy interval indirectly influences the response times of jobs
that arrive later in the busy interval. Since we consider priority inversion, and thus apply
Equation (3), only within a busy interval, it is sufficient (and easier) to use lps(Ji,j , t).
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Table 1 Preemption Model Parameters

Preemption Model RCT i Bi (where τl ∈ LPi)
Fully Preemptive Ci − ε ε− ε = 0
Fully Non-Preemptive ε maxl{Cl − ε}
Fixed Preemption Points Ci − Ci,mi + ε maxl{maxk{Cl,k} − ε}
Floating Non-Preemptive Regions Ci − ε maxl{NPS l − ε}

Therefore, building on Equation (3), we say that the cumulative priority inversion of a
task τi is bounded by a constant Bi if, for any job Ji,j of task τi and its busy interval [t1, t2),
it holds that

∑t2−1
t=t1 [[lps(Ji,j , t)]]1 ≤ Bi.

While this notion of priority-inversion bound is more general than what is needed for
non-preemptive segments, we chose it in anticipation of future work on locking protocols and
other sources of priority inversion that can occur throughout a busy interval.

6.2 Bounded Non-Preemptive Segments
In this paper, we focus on priority inversions caused by lower-priority jobs executing non-
preemptive segments of bounded length under a JLFP scheduling policy. To this end, we
strengthen our assumptions about the schedule in the following.

I Hypothesis 29. The schedule σ is (i) preemption-model compliant (Definition 28) and
(ii) work-conserving in the classic sense: for any job Ji,j and any time t, if Ji,j is pending
and not scheduled at time t (i.e., ai,j ≤ t < fi,j and σ(t) 6= Ji,j), then there exists another
job that is scheduled at time t: σ(t) 6= ⊥.

Classic work-conservation is a strong property that implies abstract work-conservation
(when instantiated as in Section 7), and also the absence of self-suspensions, delayed budget
replenishments, or any other rules or workload properties that defer a pending job’s execution.

It follows from Hypothesis 29 that a busy interval contains at most one contiguous interval
of priority inversion, which necessarily occurs at the beginning of the busy interval (if at all),
and which is bounded by the maximum non-preemptive segment length.

The following theorem serves as an intermediate layer between abstract RTA, which has no
explicit notions of preemption or priority inversion (both are considered abstract interference),
and concrete schedulers and workload models, which come with specific preemption models.
The benefit of this intermediate layer is that we can address several preemption models
together, irrespective of which scheduling policies they are combined with, so that we do not
need to repeat identical proofs as part of each instantiation.

I Theorem 30. Under Hypothesis 29, the cumulative priority inversion of τi is bounded
by Bi , max {NPS l − ε | ∀τl ∈ LPi } , where LPi ⊆ τ denotes the subset of tasks that can
generate jobs that can cause jobs of task τi to suffer priority inversion.

We provide the proof in Appendix A. Intuitively, this theorem holds because NPS l bounds
the maximum non-preemptive segment length of any job of task τl, which means that for
any job Jl,j and at any point in its execution ρ ∈ [0, cl,j ], there exists a δ ≤ NPS l such
that ψ(Jl,j , ρ+ δ) (i.e., the job will be preempted no later than NPS l time units after the
beginning of a non-preemptive segment).

Based on Theorem 30, Table 1 states concrete instantiations of the four well-known
preemption models for which we obtain concrete RTAs in the next section.
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7 RTA Instantiation for FP and EDF

Finally, we put everything together to obtain concrete response-time bounds for EDF and
FP via reductions to the sequential abstract model. Recall from Section 3 that we first must
define the interface functions. As EDF and FP are both JLFP policies, we provide general
definitions of Iσ and Wσ for a generic JLFP priority relation � : J× J→ B.

Interference Conceptually, a job Ji,j incurs interference whenever it is delayed (i.e., pre-
vented from being scheduled). Under a work-conserving JFLP policy, this occurs when either
a higher- or equal-priority job preempts Ji,j , or when a lower-priority job causes priority
inversion. In both cases, some job other than Ji,j is scheduled, which results in the following
trivial definition: Iσ(Ji,j , t) , σ(t) 6= Ji,j .

Interfering Workload The definition of Wσ(Ji,j , t) is slightly more involved. Naturally, it
includes the total cost of all higher- or equal-priority jobs released at time t. Additionally,
Ji,j accrues one time unit of interfering workload if there is a priority inversion at time t (i.e.,
if lps(Ji,j , t) holds) since no higher- or equal-priority workload is being “consumed” while a
priority inversion persists.

Wσ(Ji,j , t) , [[lps(Ji,j , t)]]1 +
∑
{ch,k | ∀Jh,k ∈ a(t) : Jh,k � Ji,j , Ji,j 6= Jh,k }

FP Interference Bound Next, we need to provide an appropriate bound on interference. It
is well-known [3, 6, 29, 45] (and formally shown in our Coq proof) that

IBFother
i (A,∆) , Bi +

∑
{RBFhp(∆) | ∀τhp : τhp 6= τi : τhp � τi }

bounds interference under FP, with Bi given by Theorem 30 for LPi , {τl | τi � τl }.

EDF Interference Bound It is further known [16] (and verified in our Coq proof) that

IBFother
i (A,∆) , Bi +

∑
{RBFo(min{A+ ε+Di −Do, ∆}) | ∀τo : τo 6= τi }

bounds interference under EDF, with Bi given by Theorem 30 for LPi , {τl | Do < Di }.
To show that these reductions to the sequential abstract model are indeed correct, one

needs to prove that Hypotheses 7, 8, and 22–24 are satisfied (which follows directly from
properties of EDF, FP, and sporadic tasks). We omit these intuitively obvious proofs here
for brevity, but stress that they form an integral part of the verified Coq proof.

As all hypotheses are satisfied, abstract sequential RTA (Theorem 27) yields the following
verified general RTAs for any preemption model. By combining Theorems 31 and 32 below
with the preemption models defined in Section 6, we obtain in total eight concrete, formally
verified RTAs for FP and EDF.

I Theorem 31. Given a preemption-model-compliant FP scheduler, a non-overloaded pro-
cessor, and sequential, non-suspending tasks, if there exists an R such that ∀A ∈ Ai,∃F,

A+ F = Bi+ (RBFi(A+ ε)− (Ci − RCT i))

+
∑
{RBFhp(A+ F ) | ∀τhp : τhp 6= τi, τhp � τi }

and F+(Ci−RCT i) ≤ R, where the search space is given by Ai , {0}∪{A < L | RBFi(A) 6=
RBFi(A+ ε)}, then the response-time of task τi is bounded by R.
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Interestingly, the definition of the search space Ai (i.e., any offset A where RBFi “steps”)
coincides with job releases in Lehoczky’s critical-instant-based busy-window analysis [29].
The interference and self-interference bounds similarly match known results. We have thus
independently obtained a proof of correctness of the well-known RTAs for FP, NP-FP, LP-FP,
and FP-NPS scheduling [7, 45], notably without relying on a critical-instant argument. With
the exception of FP scheduling [13], these bounds have not been formally verified before. In
particular, Theorem 31 verifies Davis et al.’s revised CAN analysis [11]. For EDF, we obtain:

I Theorem 32. Given a preemption-model-compliant EDF scheduler, a non-overloaded
processor, and sequential, non-suspending tasks, if there exists an R such that ∀A ∈ Ai,∃F,

A+ F = Bi+ (RBFi(A+ ε)− (Ci − RCT i))

+
∑
{RBFo(min{A+ ε+Di −Do, A+ F}) | ∀τo : τo 6= τi }

and F+(Ci−RCT i) ≤ R, where the search space is given by Ai , {0}∪{A < L | RBFi(A) 6=
RBFi(A+ ε) ∨ ∃τo ∈ τ, τo 6= τi ∧ RBFo(A+Di −Do) 6= RBFo(A+ ε+Di −Do)}, then
the response-time of task τi is bounded by R.

While similar bounds were previously known for fully preemptive EDF [18, 20, 40], to the
best of our knowledge, no RTAs have yet been proposed in prior work for NP-EDF, LP-EDF,
or EDF-NPS. Further, no RTA for EDF has previously been verified, nor was it known that
RTAs for EDF and FP share exactly the same proof scheme: namely, abstract RTA.

8 Conclusion and Future Work

Paul K. Harten Jr., in his 1987 paper [33] introducing one of the first RTAs for FP schedul-
ing [28, 33],3 which he obtained through formal reasoning in a temporal logic, stated as his
closing remark: “The problem of developing a mechanical aid for the construction of proofs of
real-time properties is a far more difficult one, and beyond the capabilities of this author” [33].

With the benefit of over 30 years of progress in the area of interactive theorem proving,
by building on powerful tools and frameworks such as Coq [41] and Coq’s Mathematical
Components library [31], we have obtained the first fully mechanized formalization and
machine-checked proof of the busy-window principle, a general proof scheme for mechanized
RTAs that we call abstract RTA. Abstract RTA allowed us to include RTAs for eight practically
relevant scheduler and workload combinations in Prosa [9, 34], which demonstrates its utility
as a powerful foundation and proof framework for the development of verified RTAs.

Many opportunities for future work and further generalization remain. First, our definition
of RBF currently precludes an efficient analysis of multi-frame task models, but this limitation
can be easily removed. Second, it would be useful to introduce RTAs with support for
precedence constraints. In a similar direction, it would be interesting to hoist Fradet et al.’s
work [14] on a generalized digraph model in Prosa on top of our abstract RTA. Third, in
this paper we focus only on the issue of proving that an instantiation of abstract RTA
provides sound results, which is in keeping with Prosa project’s focus on question of safety [9].
However, the problem of establishing necessary and sufficient conditions for an RTA to be
precise is interesting and worth considering. Last but not least, abstract RTA is sufficiently
general to obtain a verified RTA for self-suspending tasks, but obtaining a reasonably tight
interference bound for such tasks (i.e., instantiating IBFother) remains a challenging problem.

3 One of several independent, concurrent discoveries of the concept [2, 37].
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A Proof of Theorem 30

Recall that Equation (3) refers to a lower-priority job, thus a concrete priority-inversion
bound Bi necessarily depends on the specific scheduling policy. However, the core of the
argument is concerned only with the workload model. To separate the two concerns, we let
LPi ⊆ τ denote the subset of tasks that can generate jobs that (potentially) cause jobs of
task τi to suffer priority inversion. The set LPi serves to abstract from the specific priority
policy; a concrete analysis instantiation must hence provide an appropriate definition of LPi

and prove its correctness. Based on these definitions, we next establish a priority-inversion
bound for non-preemptive segments.

I Theorem 30. Under Hypothesis 29, the cumulative priority inversion of τi is bounded
by Bi , max {NPS l − ε | τl ∈ LPi } , where LPi ⊆ τ denotes the subset of tasks that can
generate jobs that (potentially) cause jobs of task τi to suffer priority inversion.

Proof. Consider any job Ji,j of task τi and its busy interval [t1, t2). We need to show that∑t2−1
t=t1 [[lps(Ji,j , t)]]1 ≤ Bi. Suppose that Ji,j incurs priority inversion at a time t′ ∈ [t1, t2).

By Equation (3), some lower-priority job Jl,k is scheduled at time t′. From clause (ii) of
Hypothesis 29, it follows that, at any point during Ji,j ’s busy interval [t1, t2), either Ji,j or
a higher-priority job is pending. By Definition 28, this means that there is no preemption
point at or prior to time t′ (as otherwise σ(t′) 6= Jl,k), and hence that Jl,k is scheduled
non-preemptively throughout (at least) [t1 − ε, t′]. As Jl,k receives service throughout this
interval, by the definition of NPS l, there exists a preemption point at some time t1 − ε+ δ

for δ ≤ NPS l. Therefore, t1 ≤ t′ < t1 − ε+ NPS l (i.e., t′ ∈ [t1, t1 + NPS l − ε)). As we have
made no assumptions on t′, at most NPS l − ε points in [t1, t2) satisfy lps(Ji,j , t′). The claim
follows since τl ∈ LPi by the definition of LPi. J

B Concrete Preemption Models

Based on Theorem 30, we present concrete instantiations of four well-known preemption
models, as summarized in Table 1. To define a preemption model, we must specify a suitable
preemption predicate ψ and infer the corresponding task-level bounds NPS i and RCT i.

Fully Preemptive In a fully preemptive model, any job can be preempted at any point
of its execution, and thus ψ(Ji,j , ρ) is trivially true for any ρ ∈ [0, ci,j ]. From ψ, we can
derive NPS i = ε, and RCT i = Ci − ε (i.e., a job executes “non-preemptively” and runs to
completion only at the last moment before completion). From Theorem 30, we have Bi = 0.

Fully Non-Preemptive In a fully non-preemptive model, a job becomes non-preemptive
as soon as it receives its first unit of service and then runs to completion, without any
intermediate preemption points: ψ(Ji,j , ρ) , ρ = 0 ∨ ρ = ci,j . Thus NPS i , Ci, RCT i , ε,
and Bi = max {Cl − ε | τl ∈ LPi }.

Fixed Preemption Points For a model with fixed preemption points, also known as the
segmented limited-preemptive model, each task τi is represented as a vector of mi non-
preemptive execution segments Ci,1, Ci,2, . . . , Ci,mi

such that qi,j = mi and 0 ≤ ci,j,k ≤
Ci,k for any job Ji,j and all k. The corresponding preemption predicate is ψ(Ji,j , ρ) ,
∃x,

∑x
k=1 ci,j,k = ρ. Therefore, NPS i , max {Ci,k | ∀k ≤ mi } and RCT i , Ci − Ci,mi + ε,

which implies Bi = maxl{maxk{Cl,k} − ε}.
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Floating Non-Preemptive Regions In a model with floating non-preemptive regions, jobs
are usually (or mostly) preemptive, but contain non-preemptive segments of bounded length
at a priori unknown points of their execution. In this model, NPS i is a first-class task
parameter (i.e., it is provided as input, and not derived from other parameters). As in the
case of fixed preemption points, the preemption predicate is ψ(Ji,j , ρ) , ∃x,

∑x
k=1 ci,j,k = ρ,

with the difference that qi,j is unknown a priori. That is, no assumption on the structure of
each job is made; just that ci,j,k ≤ NPS i for all k. As the length of the last segment of a job
can equal ε (i.e., the job may be preemptive prior to completion), we have RCT i , Ci − ε.
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